Modeling the Influence of Ambient Temperature on the Interactions Between the Stable Fly (Diptera: Muscidae) and Its Natural Enemy Spalangia cameroni (Hymenoptera: Pteromalidae) to Assess Consequences of Climate Change

Author:

Nachman Gösta1,Skovgård Henrik2

Affiliation:

1. Department of Biology, Section of Ecology and Evolution, University of Copenhagen, Universitetsparken, Copenhagen Ø, Denmark

2. Department of Agroecology, Section of Pathology and Entomology, University of Aarhus, Forsøgsvej, Slagelse, Denmark

Abstract

Abstract A simulation model was used to predict how temperature influences biological control of stable flies (Stomoxys calcitrans (L.)) by the pupal parasitoid Spalangia cameroni. Temperature, which was either constant or fluctuated due to seasonal variation and/or environmental stochasticity, was modeled as a first order autocorrelation process. The simulations showed that stable flies could tolerate a wider temperature interval than expected from their thermal performance curve (TPC). This was attributed to the fact that immature flies develop in manure, which protects them against low air temperatures. In contrast, the parasitoids were found to have a narrower thermal tolerance range than expected from their TPC. This was attributed to the temperature-dependent functional response of S. cameroni, which was a limiting factor for the parasitoid’s development and survival when host densities were low at suboptimal temperatures. The effects of seasonal variation on critical thermal limits were studied by means of thermal performance diagrams (TPDs). Fluctuating temperatures narrowed the thermal tolerance range of both species. At constant temperatures, the simulations showed that the optimal temperature for using S. cameroni in control of stable flies is ~20°C and that the parasitoid can persist in environments with yearly average temperatures between 18 and 29°C. However, if temperature variation was taken into consideration, it changed both the optimal temperature and the temperature interval at which biological control will be possible. This indicates that climate change causing increasing temperatures compounded with greater fluctuations may have serious consequences for biological control of pests.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference82 articles.

1. A dispersal-induced paradox: synchrony and stability in stochastic metapopulations;Abott;Ecol. Lett,2011

2. Can we forecast the effects of climate change on entomophagous biological control agents?;Aguilar-Fenollosa;Pest Manag. Sci,2014

3. Effects of climate warming on consumer-resource interactions: a latitudinal perspective;Amarasekare;Front. Ecol. Evol,2019

4. Climate change and species interactions: ways forward;Angert;Ann. N. Y. Acad. Sci,2013

5. The importance of biotic interactions for modelling species distributions under climate change;Araújo;Global Ecol. Biogeogr,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3