Predicting Rice Stem Stink Bug Population Dynamics Based on GAMLSS Models

Author:

Seidel E J1ORCID,Pazini J B2,Tomazella V L D3,Vieira A M C3,Silva F F4,Martins J F S5,Barrigossi J A F6

Affiliation:

1. Department of Statistic, Federal University of Santa Maria, Santa Maria, RS, Brazil

2. Department of Plant Protection, Federal University of Pelotas, Pelotas, RS, Brazil

3. Department of Statistic, Federal University of São Carlos, São Carlos, SP, Brazil

4. Federal University of Pampa, São Gabriel, RS, Brazil

5. Brazilian Agricultural Research Corporation, Embrapa Temperate Agriculture, Monte Bonito, Pelotas, RS, Brazil

6. Brazilian Agricultural Research Corporation, Embrapa Rice & Bean, Fazenda Capivara, Santo Antônio de Goiás, GO, Brazil

Abstract

Abstract The rice stem stink bug, Tibraca limbativentris Stål (Hemiptera: Pentatomidae), is one of the most harmful insects for Brazilian rice fields. Aiming to define the most appropriate time and place for pest management measures in commercial paddy fields, we adjusted regression models (Poisson, Zero Inflated Poisson, reparametrized Zero Inflated Poisson, Negative Binomial and Zero Inflated Negative Binomial) for modeling the population variation of T. limbativentris along the phenological cycle of the flooded rice cultivation. We hypothesize that the rice stem stink bug population’s size is influenced by the rice cycle (time) and geographical positions within the crop. It was possible to predict the occurrence of the rice stem stink bug in the commercial flooded rice crop. The population of the rice stem stink bug increased significantly with the time or phenological evolution of rice. Our results indicated that the start of T. limbativentris monitoring should occur up to 45 d After Plant Emergence (DAE), from the regions along the edges of the rice paddies, which are the points of entry and higher concentration of the insect. In addition, 45 and 60 DAE were considered the crucial times for T. limbativentris control decision making in flooded rice paddies.

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3