Fibers on the Fly: Multiscale Mechanisms of Fiber Formation in the Capture Slime of Velvet Worms

Author:

Baer Alexander1,Schmidt Stephan2,Mayer Georg1,Harrington Matthew J3

Affiliation:

1. Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, Kassel, Germany

2. Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Düsseldorf, Germany

3. Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada

Abstract

Abstract Many organisms have evolved a capacity to form biopolymeric fibers outside their bodies for functions such as defense, prey capture, attachment, and protection. In particular, the adhesive capture slime of onychophorans (velvet worms) is remarkable for its ability to rapidly form stiff fibers through mechanical drawing. Notably, fibers that are formed ex vivo from extracted slime can be dissolved in water and new fibers can be drawn from the solution, indicating that fiber formation is encoded in the biomolecules that comprise the slime. This review highlights recent findings on the biochemical and physicochemical principles guiding this circular process in the Australian onychophoran Euperipatoides rowelli. A multiscale cross-disciplinary approach utilizing techniques from biology, biochemistry, physical chemistry, and materials science has revealed that the slime is a concentrated emulsion of nanodroplets comprised primarily of proteins, stabilized via electrostatic interactions, possibly in a coacervate phase. Upon mechanical agitation, droplets coalesce, leading to spontaneous self-assembly and fibrillation of proteins—a completely reversible process. Recent investigations highlight the importance of subtle transitions in protein structure and charge balance. These findings have clear relevance for better understanding this adaptive prey capture behavior and providing inspiration toward sustainable polymer processing.

Funder

German Research Foundation

Natural Sciences and Engineering Research Council of Canada

NSERC Discovery

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3