Modeling the Effects of Resource-Driven Immune Defense on Parasite Transmission in Heterogeneous Host Populations

Author:

Hall Richard J123ORCID

Affiliation:

1. Odum School of Ecology, University of Georgia, Athens, GA, USA

2. Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA

3. Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA

Abstract

Abstract Individuals experience heterogeneous environmental conditions that can affect within-host processes such as immune defense against parasite infection. Variation among individuals in parasite shedding can cause some hosts to contribute disproportionately to population-level transmission, but we currently lack mechanistic theory that predicts when environmental conditions can result in large disease outbreaks through the formation of immunocompromised superspreading individuals. Here, I present a within-host model of a microparasite’s interaction with the immune system that links an individual host’s resource intake to its infectious period. For environmental scenarios driving population-level heterogeneity in resource intake (resource scarcity and resource subsidy relative to baseline availability), I generate a distribution of infectious periods and simulate epidemics on these heterogeneous populations. I find that resource scarcity can result in large epidemics through creation of superspreading individuals, while resource subsidies can reduce or prevent transmission of parasites close to their invasion threshold by homogenizing resource allocation to immune defense. Importantly, failure to account for heterogeneity in competence can result in under-prediction of outbreak size, especially when parasites are close to their invasion threshold. More generally, this framework suggests that differences in conditions experienced by individual hosts can lead to superspreading via differences in resource allocation to immune defense alone, even in the absence of other heterogeneites such as host contacts.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3