Affiliation:
1. Department of Ecology and Evolutionary Biology, Brown University, 80 Waterman Street, Providence, RI 02912, USA
2. Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM-UMA-CSIC). Avda. Dr. Wienberg s/n, Algarrobo-Costa, Málaga 29750, Spain
Abstract
Abstract
Biologists often study morphological evolution through form and function relationships. But biological structures can perform multiple functional roles, complicating efforts to understand the evolutionary significance of any one relationship. Plant reproductive organs perform multiple roles in a sequence, however, which provides a unique opportunity to understand how structures evolve to meet multiple functional demands. Using conifers as a study group, we discuss how a shared developmental trajectory links the performance of sequential functional roles. Variation in development among lineages can underlie morphological diversity; pollination-stage seed cones in Pinaceae conifers function similarly but show diverse forms reflecting differences in developmental rate. As cones develop further, the morphologies that they use to perform later functional roles are influenced by the specific developmental patterns used to meet earlier demands, which may ultimately limit morphological diversity. However, we also show how selective pressures relating to the final functional stage (seed dispersal) may influence cone anatomy and morphology over all previous stages, highlighting the complex linkages among form, function, and development. We end by discussing the potential relationships between functional ontogeny and morphological disparity in plant reproductive structures more broadly, suggesting that the complex functional roles associated with seed plant reproduction probably underlie the high disparity in this group.
Funder
US National Arboretum
Humboldt State University
Royal Botanic Gardens of Sydney
Publisher
Oxford University Press (OUP)
Subject
Plant Science,Animal Science and Zoology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献