Going Out on a Limb: How Investigation of the Anoline Adhesive System Can Enhance Our Understanding of Fibrillar Adhesion

Author:

Garner Austin M12ORCID,Wilson Michael C3,Russell Anthony P4ORCID,Dhinojwala Ali13,Niewiarowski Peter H12

Affiliation:

1. Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3908, USA

2. Department of Biology, The University of Akron, Akron, OH 44325-3908, USA

3. Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA

4. Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Abstract The remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g., self-cleaning, controlled releasability, reversibility) and adhesive performance of the gekkotan adhesive system have motivated researchers to design and fabricate gecko-inspired synthetic adhesives of various materials and properties. However, many challenges remain in our attempts to replicate the properties and performance of this complex, hierarchical fibrillar adhesive system, stemming from fundamental, but unanswered, questions about how fibrillar adhesion operates. Such questions involve the role of fibril morphology in adhesive performance and how the gekkotan adhesive apparatus is utilized in nature. Similar fibrillar adhesive systems have, however, evolved independently in two other lineages of lizards (anoles and skinks) and potentially provide alternate avenues for addressing these fundamental questions. Anoles are the most promising group because they have been the subject of intensive ecological and evolutionary study for several decades, are highly speciose, and indeed are advocated as squamate model organisms. Surprisingly, however, comparatively little is known about the morphology, performance, and properties of their convergently-evolved adhesive arrays. Although many researchers consider the performance of the adhesive system of Anolis lizards to be less accomplished than its gekkotan counterpart, we argue here that Anolis lizards are prime candidates for exploring the fundamentals of fibrillar adhesion. Studying the less complex morphology of the anoline adhesive system has the potential to enhance our understanding of fibril morphology and its relationship to the multifunctional performance of fibrillar adhesive systems. Furthermore, the abundance of existing data on the ecology and evolution of anoles provides an excellent framework for testing hypotheses about the influence of habitat microstructure on the performance, behavior, and evolution of lizards with subdigital adhesive pads.

Funder

Lubrizol Advanced Materials

Natural Science and Engineering Research Council of Canada

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3