Mason Bees (Hymenoptera: Megachilidae) Exhibit No Avoidance of Imidacloprid-Treated Soils

Author:

Fortuin Christine Cairns1ORCID,Gandhi Kamal J K1ORCID

Affiliation:

1. D.B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA

Abstract

Abstract 1) Many wild bee species interact with soil either as a nesting substrate or material. These soil interactions create a risk of exposure to agrochemicals such as imidacloprid or other neonicotinoid pesticides that can persist in soil for months after application. At the landscape level, concentrations of imidacloprid residue in soil are limited to the immediate treatment area, and thus risks to soil-interacting bees could be low if they avoid contaminated soils. 2) We utilized Osmia lignaria (Say), a solitary cavity nesting bee which collects mud to partition and seal nests, and conducted two laboratory experiments to test whether nesting females select or avoid soils containing various levels of imidacloprid residue. For the first experiment, we assessed behavioral responses of females to treated soil utilizing a choice arena and pairing various choices of soil with imidacloprid residues ranging between 0 and 780 ppb. For the second experiment, we developed a laboratory assay to assess soil selection of actively nesting O. lignaria, by providing choices of contaminated soil between 0 and 100 ppb and 0 and 1,000 ppb to nesting females. 3) We found no evidence that O. lignaria females avoided any level of imidacloprid contamination, even at the highest residue level (1,000 ppb) in both the experiments, which may have implications for risk. The in situ nesting methodology developed in this study has future applications for research on soil or pollen preferences of cavity nesting Osmia species, and potential for breeding of O. lignaria in laboratory.

Funder

USDA Southern Sustainable Agriculture Research and Education

EPA Science to Achieve Results (STAR) Fellowship

D.B. Warnell School of Forestry and Natural Resources

University of Georgia

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3