Motif-VI loop acts as a nucleotide valve in the West Nile Virus NS3 Helicase

Author:

Roy Priti1ORCID,Walter Zachary2ORCID,Berish Lauren2,Ramage Holly2ORCID,McCullagh Martin1ORCID

Affiliation:

1. Department of Chemistry, Oklahoma State University , Stillwater, OK 74078, USA

2. Department of Microbiology and Immunology, Thomas Jefferson University , Philadelphia, PA 19107, USA

Abstract

Abstract The Orthoflavivirus NS3 helicase (NS3h) is crucial in virus replication, representing a potential drug target for pathogenesis. NS3h utilizes nucleotide triphosphate (ATP) for hydrolysis energy to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. Intermediate states along the ATP hydrolysis cycle and conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. Extensive molecular dynamics simulations of West Nile virus NS3h+ssRNA in the apo, ATP, ADP+Pi and ADP bound states were used to model the conformational ensembles along this cycle. Energetic and structural clustering analyses depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). Based on these results, MVIL mutants (D471L, D471N and D471E) were found to have a substantial reduction in ATPase activity and RNA replication compared to the wild-type. Simulations of the mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open ‘valve’ conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a ‘valve’ for the ATP-pocket, presenting a promising target for antiviral development.

Funder

National Institute of Allergy and Infectious Diseases

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3