Affiliation:
1. School for Life Science and Technology, Hanze University of Applied Sciences , 9747 AS Groningen , The Netherlands
2. Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen , 9747 AG Groningen , The Netherlands
Abstract
Abstract
RNA molecules perform a variety of functions in cells, many of which rely on their secondary and tertiary structures. Chemical probing methods coupled with high-throughput sequencing have significantly accelerated the mapping of RNA structures, and increasingly large datasets of transcriptome-wide RNA chemical probing data are becoming available. Analogously to what has been done for decades in the protein world, this RNA structural information can be leveraged to aid the discovery of structural similarity to a known RNA (or RNA family), which, in turn, can inform about the function of transcripts. We have previously developed SHAPEwarp, a sequence-agnostic method for the search of structurally homologous RNA segments in a database of reactivity profiles derived from chemical probing experiments. In its original implementation, however, SHAPEwarp required substantial computational resources, even for moderately sized databases, as well as significant Linux command line know-how. To address these limitations, we introduce here SHAPEwarp-web, a user-friendly web interface to rapidly query large databases of RNA chemical probing data for structurally similar RNAs. Aside from featuring a completely rewritten core, which speeds up by orders of magnitude the search inside large databases, the web server hosts several high-quality chemical probing databases across multiple species. SHAPEwarp-web is available from https://shapewarp.incarnatolab.com.
Funder
Dutch Research Council
Horizon Europe—European Research Council
University of Groningen
Publisher
Oxford University Press (OUP)