Affiliation:
1. School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
2. Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430030 , China
Abstract
Abstract
The revolutionary technology of CRISPR/Cas has reshaped the landscape of molecular biology and molecular engineering. This tool is of interest to researchers in multiple fields, including molecular diagnostics, molecular biochemistry circuits, and information storage. As CRISPR/Cas spreads to more niche areas, new application scenarios and requirements emerge. Developing programmability and compatibility of CRISPR/Cas becomes a critical issue in the new phase. Here, we report a redundancy-based modular CRISPR/Cas12a synergistic activation platform (MCSAP). The position, length, and concentration of the redundancy in the split DNA activators can finely regulate the activity of Cas12a. With the redundant structure as an interface, MCSAP serves as a modular plug-in to seamlessly integrate with the upstream molecular network. MCSAP successfully performs three different tasks: nucleic acid detection, enzyme detection, and logic operation. MCSAP can work as an effector for different molecular networks because of its compatibility and programmability. Our platform provides powerful yet easy-to-use tools and strategies for the fields of DNA nanotechnology, molecular engineering, and molecular biology.
Funder
National Natural Science Foundation of China
State Key Laboratory of Digital Medical Engineering
Publisher
Oxford University Press (OUP)