Affiliation:
1. CNRS-LGDP UMR 5096 , 58 avenue Paul Alduy, 66860 Perpignan , France
2. Université de Perpignan Via Domitia-LGDP UMR5096 , 58 avenue Paul Alduy , 66860 Perpignan , France
Abstract
Abstract
Until recently, the general 5′-3′ mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5′ to 3′ pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Funder
Agence Nationale de la Recherche
Publisher
Oxford University Press (OUP)
Reference54 articles.
1. Biological function of changes in RNA metabolism in plant adaptation to abiotic stress;Matsui;Plant Cell Physiol.,2019
2. Polysomes, stress granules, and processing bodies: a dynamic triumvirate controlling cytoplasmic mRNA fate and function;Chantarachot;Plant Physiol.,2018
3. Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development;Xu;Plant Cell,2009
4. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development;Xu;Plant Cell,2006
5. Conserved RNaseII domain protein functions in cytoplasmic mRNA decay and suppresses Arabidopsis decapping mutant phenotypes;Zhang;Proc. Natl. Acad. Sci. U.S.A.,2010