Employing bimodal representations to predict DNA bendability within a self-supervised pre-trained framework

Author:

Yang Minghao1ORCID,Zhang Shichen1,Zheng Zhihang1,Zhang Pengfei1,Liang Yan2,Tang Shaojun13ORCID

Affiliation:

1. Bioscience and Biomedical Engineering Thrust, System Hub, Hong Kong University of Science and Technology (Guangzhou) , Guangzhou 511466, China

2. School of Artificial Intelligence, South China Normal University , Foshan 528225, China

3. Division of Life Science, Hong Kong University of Science and Technology , Hong Kong SAR 999077, China

Abstract

Abstract The bendability of genomic DNA, which measures the DNA looping rate, is crucial for numerous biological processes of DNA. Recently, an advanced high-throughput technique known as ‘loop-seq’ has made it possible to measure the inherent cyclizability of DNA fragments. However, quantifying the bendability of large-scale DNA is costly, laborious, and time-consuming. To close the gap between rapidly evolving large language models and expanding genomic sequence information, and to elucidate the DNA bendability’s impact on critical regulatory sequence motifs such as super-enhancers in the human genome, we introduce an innovative computational model, named MIXBend, to forecast the DNA bendability utilizing both nucleotide sequences and physicochemical properties. In MIXBend, a pre-trained language model DNABERT and convolutional neural network with attention mechanism are utilized to construct both sequence- and physicochemical-based extractors for the sophisticated refinement of DNA sequence representations. These bimodal DNA representations are then fed to a k-mer sequence-physicochemistry matching module to minimize the semantic gap between each modality. Lastly, a self-attention fusion layer is employed for the prediction of DNA bendability. In conclusion, the experimental results validate MIXBend’s superior performance relative to other state-of-the-art methods. Additionally, MIXBend reveals both novel and known motifs from the yeast. Moreover, MIXBend discovers significant bendability fluctuations within super-enhancer regions and transcription factors binding sites in the human genome.

Funder

HKUST(Guangzhou) Municipal Start-up Fund

Center for Aging Science 2022 Seed Funding

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3