Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina

Author:

Vázquez-Domínguez Irene1ORCID,Anido Alejandro Allo1,Duijkers Lonneke1,Hoppenbrouwers Tamara1,Hoogendoorn Anita D M2,Koster Céline3,Collin Rob W J1ORCID,Garanto Alejandro12ORCID

Affiliation:

1. Radboud university medical center, Department of Human Genetics , Nijmegen , The Netherlands

2. Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics , Nijmegen , The Netherlands

3. Departments of Human Genetics and Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam , Amsterdam , The Netherlands

Abstract

Abstract Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2′O-methyl-phosphorothioate (2-OMe/PS), 2′O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2′MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.

Funder

Foundation Fighting Blindness USA Project Program Award

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3