Reinventing gene expression connectivity through regulatory and spatial structural empowerment via principal node aggregation graph neural network

Author:

Yan Fengyao12,Jiang Limin1,Chen Danqian1,Ceccarelli Michele1ORCID,Guo Yan1ORCID

Affiliation:

1. Department of Public Health and Sciences, University of Miami , Miami, FL  33126 , USA

2. Department of Computer Science, University of South Carolina , Columbia, SC  29201 , USA

Abstract

Abstract The intricacies of the human genome, manifested as a complex network of genes, transcend conventional representations in text or numerical matrices. The intricate gene-to-gene relationships inherent in this complexity find a more suitable depiction in graph structures. In the pursuit of predicting gene expression, an endeavor shared by predecessors like the L1000 and Enformer methods, we introduce a novel spatial graph-neural network (GNN) approach. This innovative strategy incorporates graph features, encompassing both regulatory and structural elements. The regulatory elements include pair-wise gene correlation, biological pathways, protein–protein interaction networks, and transcription factor regulation. The spatial structural elements include chromosomal distance, histone modification and Hi-C inferred 3D genomic features. Principal Node Aggregation models, validated independently, emerge as frontrunners, demonstrating superior performance compared to traditional regression and other deep learning models. By embracing the spatial GNN paradigm, our method significantly advances the description of the intricate network of gene interactions, surpassing the performance, predictable scope, and initial requirements set by previous methods.

Funder

National Cancer Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3