Affiliation:
1. Department of Chemistry, University of Nebraska , 639 North 12 th St, Lincoln , NE 68588 , USA
Abstract
Abstract
Structured RNAs often contain long-range tertiary contacts that are critical to their function. Despite the importance of tertiary contacts, methods to measure their thermodynamics are low throughput or require specialized instruments. Here, we introduce a new quantitative chemical mapping method (qMaPseq) to measure Mg2+-induced formation of tertiary contact thermodynamics in a high-throughput manner using standard biochemistry equipment. With qMaPseq, we measured the ΔG of 98 unique tetraloop/tetraloop receptor (TL/TLR) variants in a one-pot reaction. These results agree well with measurements from specialized instruments (R2= 0.64). Furthermore, the DMS reactivity of the TL directly correlates to the stability of the contact (R2= 0.68), the first direct evidence that a single DMS reactivity measurement reports on thermodynamics. Combined with structure prediction, DMS reactivity allowed the development of experimentally accurate 3D models of TLR mutants. These results demonstrate that qMaPseq is broadly accessible, high-throughput and directly links DMS reactivity to thermodynamics.
Publisher
Oxford University Press (OUP)