An autocatalytic CRISPR-Cas amplification effect propelled by the LNA-modified split activators for DNA sensing

Author:

Sun Ke12ORCID,Pu Lei1,Chen Chuan13,Chen Mutian1,Li Kaiju1,Li Xinqiong1,Li Huanqing1,Geng Jia12ORCID

Affiliation:

1. Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu , 610041  Chengdu , China

2. Tianfu Jincheng Laboratory, City of Future Medicine , Chengdu  641400 , China

3. School of Pharmacy, North Sichuan Medical College , 637000  Nanchong , China

Abstract

Abstract CRISPR-Cas systems with dual functions offer precise sequence-based recognition and efficient catalytic cleavage of nucleic acids, making them highly promising in biosensing and diagnostic technologies. However, current methods encounter challenges of complexity, low turnover efficiency, and the necessity for sophisticated probe design. To better integrate the dual functions of Cas proteins, we proposed a novel approach called CRISPR-Cas Autocatalysis Amplification driven by LNA-modified Split Activators (CALSA) for the highly efficient detection of single-stranded DNA (ssDNA) and genomic DNA. By introducing split ssDNA activators and the site-directed trans-cleavage mediated by LNA modifications, an autocatalysis-driven positive feedback loop of nucleic acids based on the LbCas12a system was constructed. Consequently, CALSA enabled one-pot and real-time detection of genomic DNA and cell-free DNA (cfDNA) from different tumor cell lines. Notably, CALSA achieved high sensitivity, single-base specificity, and remarkably short reaction times. Due to the high programmability of nucleic acid circuits, these results highlighted the immense potential of CALSA as a powerful tool for cascade signal amplification. Moreover, the sensitivity and specificity further emphasized the value of CALSA in biosensing and diagnostics, opening avenues for future clinical applications.

Funder

National Key Research and Development Program of China

Science & Technology Department of Sichuan Province

West China Hospital, Sichuan University

China Postdoctoral Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3