A new perspective on microRNA-guided gene regulation specificity, and its potential generalization to transcription factors and RNA-binding proteins

Author:

Seitz Hervé1ORCID

Affiliation:

1. Institut de Génétique Humaine (UMR 9002), CNRS , 141, rue de la Cardonille, 34396 Montpellier, France

Abstract

Abstract Our conception of gene regulation specificity has undergone profound changes over the last 20 years. Previously, regulators were considered to control few genes, recognized with exquisite specificity by a ‘lock and key’ mechanism. However, recently genome-wide exploration of regulator binding site occupancy (whether on DNA or RNA targets) revealed extensive lists of molecular targets for every studied regulator. Such poor biochemical specificity suggested that each regulator controls many genes, collectively contributing to biological phenotypes. Here, I propose a third model, whereby regulators’ biological specificity is only partially due to ‘lock and key’ biochemistry. Rather, regulators affect many genes at the microscopic scale, but biological consequences for most interactions are attenuated at the mesoscopic scale: only a few regulatory events propagate from microscopic to macroscopic scale; others are made inconsequential by homeostatic mechanisms. This model is well supported by the microRNA literature, and data suggest that it extends to other regulators. It reconciles contradicting observations from biochemistry and comparative genomics on one hand and in vivo genetics on the other hand, but this conceptual unification is obscured by common misconceptions and counter-intuitive modes of graphical display. Profound understanding of gene regulation requires conceptual clarification, and better suited statistical analyses and graphical representation.

Funder

Agence Nationale de la Recherche

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3