Functional redundancy in tRNA dihydrouridylation

Author:

Sudol Claudia12,Kilz Lea-Marie3,Marchand Virginie45,Thullier Quentin45,Guérineau Vincent6,Goyenvalle Catherine1,Faivre Bruno2,Toubdji Sabrine12,Lombard Murielle2,Jean-Jean Olivier1,de Crécy-Lagard Valérie78ORCID,Helm Mark3ORCID,Motorin Yuri45ORCID,Brégeon Damien1,Hamdane Djemel2ORCID

Affiliation:

1. Sorbonne Université, CNRS, Institut de Biologie Paris Seine, Biology of Aging and Adaptation , Paris 75252 , France

2. Collège De France, Sorbonne Université, CNRS, Laboratoire de Chimie des Processus Biologiques , 11 place Marcelin Berthelot , 75231 Paris  Cedex 05 , France

3. Institut für pharmazeutische und biomedizinische Wissenschaften (IPBW), Johannes Gutenberg-Universität , Mainz  55128 , Germany

4. Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility , Nancy  F-54000 , France

5. Université de Lorraine, CNRS, UMR7365 IMoPA , Nancy  F-54000 , France

6. Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles , UPR 2301, 91198, Gif-sur-Yvette, France

7. Department of Microbiology and Cell Science, University of Florida , Gainesville , FL  32611 , USA

8. University of Florida, Genetics Institute , Gainesville , FL  32610 , USA

Abstract

Abstract Dihydrouridine (D) is a common modified base found predominantly in transfer RNA (tRNA). Despite its prevalence, the mechanisms underlying dihydrouridine biosynthesis, particularly in prokaryotes, have remained elusive. Here, we conducted a comprehensive investigation into D biosynthesis in Bacillus subtilis through a combination of genetic, biochemical, and epitranscriptomic approaches. Our findings reveal that B. subtilis relies on two FMN-dependent Dus-like flavoprotein homologs, namely DusB1 and DusB2, to introduce all D residues into its tRNAs. Notably, DusB1 exhibits multisite enzyme activity, enabling D formation at positions 17, 20, 20a and 47, while DusB2 specifically catalyzes D biosynthesis at positions 20 and 20a, showcasing a functional redundancy among modification enzymes. Extensive tRNA-wide D-mapping demonstrates that this functional redundancy impacts the majority of tRNAs, with DusB2 displaying a higher dihydrouridylation efficiency compared to DusB1. Interestingly, we found that BsDusB2 can function like a BsDusB1 when overexpressed in vivo and under increasing enzyme concentration in vitro. Furthermore, we establish the importance of the D modification for B. subtilis growth at suboptimal temperatures. Our study expands the understanding of D modifications in prokaryotes, highlighting the significance of functional redundancy in this process and its impact on bacterial growth and adaptation.

Funder

Deutsche Forschungsgemeinschaft

Agence Nationale de la Recherche

National Institute of Health

Publisher

Oxford University Press (OUP)

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3