Y-switch: a spring-loaded synthetic gene switch for robust DNA/RNA signal amplification and detection

Author:

Gupta Krishna12ORCID,Krieg Elisha12ORCID

Affiliation:

1. Institute for Biofunctional Polymer Materials, Leibniz Institute of Polymer Research Dresden, Dresden , Germany

2. Faculty of Chemistry and Food Chemistry, TU Dresden, Dresden , Germany

Abstract

Abstract Nucleic acid tests (NATs) are essential for biomedical diagnostics. Traditional NATs, often complex and expensive, have prompted the exploration of toehold-mediated strand displacement (TMSD) circuits as an economical alternative. However, the wide application of TMSD-based reactions is limited by ‘leakage’—the spurious activation of the reaction leading to high background signals and false positives. Here, we introduce the Y-Switch, a new TMSD cascade design that recognizes a custom nucleic acid input and generates an amplified output. The Y-Switch is based on a pair of thermodynamically spring-loaded DNA modules. The binding of a predefined nucleic acid target triggers an intermolecular reaction that activates a T7 promoter, leading to the perpetual transcription of a fluorescent aptamer that can be detected by a smartphone camera. The system is designed to permit the selective depletion of leakage byproducts to achieve high sensitivity and zero-background signal in the absence of the correct trigger. Using Zika virus (ZIKV)- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived nucleic acid sequences, we show that the assay generates a reliable target-specific readout. Y-Switches detect native RNA under isothermal conditions without reverse transcription or pre-amplification, with a detection threshold as low as ∼200 attomole. The modularity of the assay allows easy re-programming for the detection of other targets by exchanging a single sequence domain. This work provides a low-complexity and high-fidelity synthetic biology tool for point-of-care diagnostics and for the construction of more complex biomolecular computations.

Funder

BMBF

NanoMatFutur

Publisher

Oxford University Press (OUP)

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3