Eukaryotic AlaX provides multiple checkpoints for quality and quantity of aminoacyl-tRNAs in translation

Author:

Li Zi-Han1,Zhou Xiao-Long12ORCID

Affiliation:

1. Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences , 320 Yue Yang Road , Shanghai  200031 , China

2. Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences , Hangzhou  310024 , China

Abstract

Abstract Translational fidelity relies critically on correct aminoacyl-tRNA supply. The trans-editing factor AlaX predominantly hydrolyzes Ser-tRNAAla, functioning as a third sieve of alanyl-tRNA synthetase (AlaRS). Despite extensive studies in bacteria and archaea, the mechanism of trans-editing in mammals remains largely unknown. Here, we show that human AlaX (hAlaX), which is exclusively distributed in the cytoplasm, is an active trans-editing factor with strict Ser-specificity. In vitro, both hAlaX and yeast AlaX (ScAlaX) were capable of hydrolyzing nearly all Ser-mischarged cytoplasmic and mitochondrial tRNAs; and robustly edited cognate Ser-charged cytoplasmic and mitochondrial tRNASers. In vivo or cell-based studies revealed that loss of ScAlaX or hAlaX readily induced Ala- and Thr-to-Ser misincorporation. Overexpression of hAlaX impeded the decoding efficiency of consecutive Ser codons, implying its regulatory role in Ser codon decoding. Remarkably, yeast cells with ScAlaX deletion responded differently to translation inhibitor treatment, with a gain in geneticin resistance, but sensitivity to cycloheximide, both of which were rescued by editing-capable ScAlaX, alanyl- or threonyl-tRNA synthetase. Altogether, our results demonstrated the previously undescribed editing peculiarities of eukaryotic AlaXs, which provide multiple checkpoints to maintain the speed and fidelity of genetic decoding.

Funder

Chinese Academy of Sciences

National Key Research and Development Program of China

Natural Science Foundation of China

Committee of Science and Technology in Shanghai

CAS Project for Young Scientists in Basic Research

Publisher

Oxford University Press (OUP)

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3