Chemical synthesis of 2″OMeNAD+ and its deployment as an RNA 2′-phosphotransferase (Tpt1) ‘poison’ that traps the enzyme on its abortive RNA-2′-PO4-(ADP-2″OMe-ribose) reaction intermediate

Author:

Arnold Jakob1,Ghosh Shreya2,Kasprzyk Renata1,Brakonier Marcel1,Hanna Markus1,Marx Andreas1ORCID,Shuman Stewart2ORCID

Affiliation:

1. Department of Chemistry, University of Konstanz , 78457 Konstanz , Germany

2. Molecular Biology Program, Memorial Sloan Kettering Cancer Center , New York , NY 10065 , USA

Abstract

Abstract RNA 2′-phosphotransferase Tpt1 catalyzes the removal of an internal RNA 2′-PO4 via a two-step mechanism in which: (i) the 2′-PO4 attacks NAD+ C1″ to form an RNA-2′-phospho-(ADP-ribose) intermediate and nicotinamide; and (ii) transesterification of the ADP-ribose O2″ to the RNA 2′-phosphodiester yields 2′-OH RNA and ADP-ribose-1″,2″-cyclic phosphate. Although Tpt1 enzymes are prevalent in bacteria, archaea, and eukarya, Tpt1 is uniquely essential in fungi and plants, where it erases the 2′-PO4 mark installed by tRNA ligases during tRNA splicing. To identify a Tpt1 ‘poison’ that arrests the reaction after step 1, we developed a chemical synthesis of 2″OMeNAD+, an analog that cannot, in principle, support step 2 transesterification. We report that 2″OMeNAD+ is an effective step 1 substrate for Runella slithyformis Tpt1 (RslTpt1) in a reaction that generates the normally undetectable RNA-2′-phospho-(ADP-ribose) intermediate in amounts stoichiometric to Tpt1. EMSA assays demonstrate that RslTpt1 remains trapped in a stable complex with the abortive RNA-2′-phospho-(ADP-2″OMe-ribose) intermediate. Although 2″OMeNAD+ establishes the feasibility of poisoning and trapping a Tpt1 enzyme, its application is limited insofar as Tpt1 enzymes from fungal pathogens are unable to utilize this analog for step 1 catalysis. Analogs with smaller 2″-substitutions may prove advantageous in targeting the fungal enzymes.

Funder

US National Institutes of Health

Deutsche Forschungsgemeinschaft

Alexander von Humboldt Foundation

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3