Affiliation:
1. University of Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Oxford , United Kingdom
2. Lund University, Skåne University Hospital Lund, Department of Clinical Sciences Lund, Clinical Physiology , Lund , Sweden
Abstract
Abstract
Aims
Patients with non-obstructive hypertrophic cardiomyopathy (HCM) exhibit myocardial changes which may cause flow inefficiencies not detectable on echocardiogram. We investigated whether left ventricular (LV) kinetic energy (KE) and hemodynamic forces (HDF) on 4D-flow cardiovascular magnetic resonance (CMR) can provide more sensitive measures of flow in non-obstructive HCM.
Methods and results
Ninety participants (70 with non-obstructive HCM and 20 healthy controls) underwent 4D-flow CMR. Patients were categorized as phenotype positive (P+) based on maximum wall thickness (MWT) ≥ 15 mm or ≥13 mm for familial HCM, or pre-hypertrophic sarcomeric variant carriers (P−). LV KE and HDF were computed from 4D-flow CMR. Stroke work was computed using a previously validated non-invasive method. P+ and P− patients and controls had comparable diastolic velocities and LV outflow gradients on echocardiography, LV ejection fraction, and stroke volume on CMR. P+ patients had greater stroke work than P− patients, higher systolic KE compared with controls (5.8 vs. 4.1 mJ, P = 0.0009), and higher late diastolic KE relative to P− patients and controls (2.6 vs. 1.4 vs. 1.9 mJ, P < 0.0001, respectively). MWT was associated with systolic KE (r = 0.5, P < 0.0001) and diastolic KE (r = 0.4, P = 0.005), which also correlated with stroke work. Systolic HDF ratio was increased in P+ patients compared with controls (1.0 vs. 0.8, P = 0.03) and correlated with MWT (r = 0.3, P = 0.004). Diastolic HDF was similar between groups. Sarcomeric variant status was not associated with KE or HDF.
Conclusion
Despite normal flow velocities on echocardiography, patients with non-obstructive HCM exhibited greater stroke work, systolic KE and HDF ratio, and late diastolic KE relative to controls. 4D-flow CMR provides more sensitive measures of haemodynamic inefficiencies in HCM, holding promise for clinical trials of novel therapies and clinical surveillance of non-obstructive HCM.
Funder
British Heart Foundation
National Institute for Health and Care Research Biomedical Research Centre
CureHeart
BHF Big Beat Challenge
Publisher
Oxford University Press (OUP)
Reference35 articles.
1. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association joint committee on clinical practice guidelines;Ommen;Circulation,2020
2. Exercise echocardiography in asymptomatic HCM: exercise capacity, and not LV outflow tract gradient predicts long-term outcomes;Desai;JACC Cardiovasc Imaging,2014
3. Clinical and echocardiographic determinants of long-term survival after surgical myectomy in obstructive hypertrophic cardiomyopathy;Woo;Circulation,2005
4. Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization;Geske;Circulation,2007
5. Alcohol septal ablation markedly reduces energy loss in hypertrophic cardiomyopathy with left ventricular outflow tract obstruction: a four-dimensional flow cardiac magnetic resonance study;Dai;IJC Hear Vasc,2021