Inertial Measurement Unit-Assisted Implantation of Pedicle Screws in Combination With an Intraoperative 3-Dimensional/2-Dimensional Visualization of the Spine

Author:

Jost Gregory F1,Walti Jonas2,Mariani Luigi3,Schaeren Stefan1,Cattin Philippe2

Affiliation:

1. Spine Surgery, University Hospital Basel, Basel, Switzerland

2. Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland

3. Department of Neurosurgery, University Hospital Basel, Basel, Switzerland

Abstract

Abstract BACKGROUND Inertial measurement units (IMUs) are microelectromechanical systems used to track orientation and motion. OBJECTIVE To use instruments mounted with IMUs in combination with a 3- and 2-dimensional (3D/2D) rendering of the computed-tomography scan (CT) to guide implantation of pedicle screws. METHODS Pedicle screws were implanted from T1 to S1 in 2 human cadavers. A software application enabled the surgeon to select the starting points and trajectories on a 3D/2D image of the spine, then locate these starting points on the exposed spine and apply the IMU-mounted instruments to reproduce the trajectories. The position of the screws was evaluated on the postoperative CT scan. RESULTS A total of 72 pedicle screws were implanted. Thirty-seven (77%) of the thoracic screws were within the pedicle (Heary I), 7 (15%) showed a lateral breach of the pedicle, and 4 (8%) violated the anterior or lateral vertebral body (Heary III). In the lumbar spine and S1, 21 screws (88%) were within the pedicle (Gertzbein 0), 2 (8%) screws had a pedicle wall breach < 2 mm (Gertzbein 1), and 1 > 2 to < 4 mm (Gertzbein 2). In the second cadaver, the position was compared to the intraoperatively shown virtual position. The median offset was 3°(mean 3° ± 2°, variance 5, range 0°–9°) in the sagittal plane and 3° (mean 4° ± 3°, variance 9, range 0°–12°) in the axial plane. CONCLUSION IMU-assisted implantation of pedicle screws combined with an intraoperative 3D/2D visualization of the spine enabled the surgeon to precisely implant pedicle screws on the exposed spine.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3