Multitrophic biodiversity enhances ecosystem functions, services and ecological intensification in agriculture

Author:

Buzhdygan Oksana Y1,Petermann Jana S2ORCID

Affiliation:

1. Department of Biology, Chemistry, Pharmacy, Institute of Biology , Freie Universität Berlin, Königin-Luise-Straße 2/4, Gartenhaus, D-14195 Berlin , Germany

2. Department of Environment and Biodiversity , University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg , Austria

Abstract

AbstractOne central challenge for humanity is to mitigate and adapt to an ongoing climate and biodiversity crisis while providing resources to a growing human population. Ecological intensification (EI) aims to maximize crop productivity while minimizing impacts on the environment, especially by using biodiversity to improve ecosystem functions and services. Many EI measures are based on trophic interactions between organisms (e.g. pollination, biocontrol). Here, we investigate how research on multitrophic effects of biodiversity on ecosystem functioning could advance the application of EI measures in agriculture and forestry. We review previous studies and use qualitative analyses of the literature to test how important variables such as land-use parameters or habitat complexity affect multitrophic diversity, ecosystem functions and multitrophic biodiversity–ecosystem functioning relationships. We found that positive effects of biodiversity on ecosystem functions are prevalent in production systems, largely across ecosystem function dimensions, trophic levels, study methodologies and different ecosystem functions, however, with certain context dependencies. We also found strong impacts of land use and management on multitrophic biodiversity and ecosystem functions. We detected knowledge gaps in terms of data from underrepresented geographical areas, production systems, organism groups and functional diversity measurements. Additionally, we identified several aspects that require more attention in the future, such as trade-offs between multiple functions, temporal dynamics, effects of climate change, the spatial scale of the measures and their implementation. This information will be vital to ensure that agricultural and forest landscapes produce resources for humanity sustainably within the environmental limits of the planet.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3