Leaf and root traits are partially coordinated but they show contrasting multi-trait-based community trait dispersion patterns in a subtropical forest

Author:

Luo Wenqi1,Valverde-Barrantes Oscar J2,Weemstra Monique2,Cahill James F3,Wang Zi1,He Dong4,Chen Yongfa1,Chu Chengjin1ORCID,Wang Youshi1

Affiliation:

1. State Key Laboratory of Biocontrol, School of Life Sciences/School of Ecology, Sun Yat-sen University , Guangzhou 510275 , China

2. International Center for Tropical Botany, Department of Biological Sciences, Florida International University , Miami, FL 33199 , USA

3. Department of Biological Sciences, University of Alberta , Edmonton, AB, T6G 2E9 , Canada

4. School of Ecology and the Environment, Xinjiang University , Urumqi 830046 , China

Abstract

Abstract The ecology of plant species relies on the synchronous functioning of leaves and roots, but few studies have simultaneously examined the community trait dispersion (CTD) patterns of both organs. We measured 16 analogous leaf and root traits on 44 co-occurring woody species in a subtropical forest in southern China, aiming to examine whether leaf and root traits were coordinated, organized into parallel trait axes, exhibited similar CTD, and displayed consistent responses in CTD and community-weighted means of (CWM) traits over environmental gradients. While the first axes of leaf and root trait variation similarly exhibited a fast–slow continuum, leaf traits covered a secondary “carbon economics” axis, contrasting to root traits depicting a collaboration axis reflecting species’ mycorrhizal dependency. Analogous leaf and root chemical traits were generally coordinated but less so for morphological traits. At the community level, changes in the CWM of the first axes were generally consistent among organs with more conservative traits found as increasing elevation but not for the second axis. While root traits became thinner and more conservative as soil phosphorus concentration decreased, leaf traits rarely varied. When different trait axes were combined, leaf traits were overdispersed but tended to converge with increased elevation and soil potassium and phosphorus levels, whereas root traits were clustered but tended to diverge along the same gradients. Our study highlights fine filtering of different suites of traits above- and belowground, which in turn might reduce overall niche overlap among species and promote coexistence with diverse functional designs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Guangdong Basic and Applied Basic Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3