Environmental Variables Influencing Chironomid Assemblages (Diptera: Chironomidae) in Lowland Rivers of Central Poland

Author:

Leszczyńska Joanna1,Grzybkowska Maria1,Głowacki Łukasz1,Dukowska Małgorzata1

Affiliation:

1. Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, PL

Abstract

Abstract Chironomids (Diptera: Chironomidae) are a family of dipterans with a global distribution. Owing to their great functional diversity and ability to adapt to a wide range of environmental conditions, they often dominate in freshwater macroinvertebrate communities, playing a key role in the cycling of organic matter and the flow of energy in aquatic ecosystems. Our aim was to analyze the structure of chironomid assemblages and identify the environmental factors, including current velocity, river width, water depth, water temperature, dissolved oxygen, percentage of substrate covered by vascular plants, inorganic bottom substrate, and quantity of benthic (BPOM) and transported (TPOM) particulate organic matter, that underpin variation in species richness across a set of lowland rivers in central Poland, differing by stream order and abiotic parameters. Using an Information Theoretic Approach, we formulated a set of alternative models based on previously published work, with models fitted in a Bayesian framework using Integrated Nested Laplace Approximation. The species richness of chironomids increased with river order, achieving a maximum in third and fourth order rivers, but decreased at higher orders. The best-fitting models included a positive effect of inorganic substrate index and dissolved oxygen on chironomid species richness. The quality structure of chironomid assemblages reflected the assumptions of the River Continuum Concept showing that species richness was under the influence of factors operating at both a micro- (inorganic bottom substrate) and macro-scale (dissolved oxygen).

Funder

University of Lodz grants

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3