Transcriptomic and physiological analysis identifies a gene network module highly associated with brassinosteroid regulation in hybrid sweetgum tissues differing in the capability of somatic embryogenesis

Author:

Zhao Ruirui1,Qi Shuaizheng1,Cui Ying1,Gao Ying1,Jiang Shuaifei1,Zhao Jian1,Zhang Jinfeng1,Kong Lisheng12

Affiliation:

1. College of Biological Sciences and Biotechnology National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, , Beijing Forestry University, Beijing 100083, China

2. University of Victoria Centre for Forest Biology, Department of Biology, , 3800 Finnerty Rd, Victoria, BC V8W 3N5, Canada

Abstract

Abstract Somatic embryogenesis is a preferred method for large-scale production of forest trees due to its high propagation efficiency. In this study, hybrid sweetgum leaves with phase changes from mature to embryogenic state were selected as experimental material to study somatic embryo initiation. Embryogenicity ranged from high to low, i.e. from 45%, 25%, and 12.5% to 0, with the samples of embryogenic callus (EC), whiten leaf edge (WLI), whiten leaf (WLII), and green leaf (GL) respectively. High correlations existed between embryogenicity and endogenous brassinosteroids (BRs) (r = 0.95, p < 0.05). Similarly, concentrations of endogenous BRs of the sample set correlated positively (r = 0.93, 0.99, 0.87, 0.99, 0.96 respectively, P < 0.05) to expression of somatic embryo (SE)-related genes, i.e. BBM, LEC2, ABI3, PLT2, and WOX2. Hierarchical cluster and weighted gene coexpression network analysis identified modules of coexpressed genes and network in 4820 differentially expressed genes (DEGs) from All-BR-Regulated Genes (ABRG). Moreover, exogenously-supplemented epiBR, together with 2,4-D and 6-BA, increased embryogenicity of GL-sourced callus, and expression of SE- and auxin-related genes, while brassinazole (BRZ), a BR biosynthesis inhibitor, reduced embryogenicity. Evidences obtained in this study revealed that BRs involved in phase change of leaf explants and may function in regulating gene expression and enhancing auxin effects. This study successfully established protocols for inducing somatic embryogenesis from leaf explants in hybrid sweetgum, which could facilitate the propagation process greatly, and provide theoretical basis for manipulating SE competence of explants in ornamental woody plants.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3