Insertion of a mMoshan transposable element in PpLMI1, is associated with the absence or globose phenotype of extrafloral nectaries in peach [Prunus persica (L.) Batsch

Author:

Lambert Patrick1,Confolent Carole12,Heurtevin Laure1,Dlalah Naïma1,Signoret Véronique1,Quilot-Turion Bénédicte1,Pascal Thierry1

Affiliation:

1. INRAE, GAFL, Montfavet, F-84143, FRANCE

2. INRAE, UMR GDEC, Clermont-Ferrand, F-63100, FRANCE

Abstract

Abstract Most commercial peach [Prunus persica (L.) Batsch] cultivars have leaves with extrafloral nectaries (EFNs). Breeders have selected this character over time, as they observed that the eglandular phenotype resulted in high susceptibility to peach powdery mildew, a major disease of peach trees. EFNs are controlled by a Mendelian locus (E), mapped on chromosome 7. However, the genetic factor underlying E was unknown. In order to address this point, we developed a mapping population of 833 individuals derived from the selfing of “Malo Konare”, a Bulgarian peach cultivar, heterozygous for the trait. This progeny was used to investigate the E-locus region, along with additional resources including peach genomic resequencing data, and 271 individuals from various origins used for validation. High-resolution mapping delimited a 40.6 kbp interval including the E-locus and four genes. Moreover, three double-recombinants allowed identifying Prupe.7G121100, a LMI1-like homeodomain leucine zipper (HD-Zip) transcription factor, as a likely candidate for the trait. By comparing peach genomic resequencing data from individuals with contrasted phenotypes, a MITE-like transposable element of the hAT superfamily (mMoshan) was identified in the third exon of Prupe.7G121100. It was associated with the absence or globose phenotype of EFNs. The insertion of the transposon was positively correlated with enhanced expression of Prupe.7G121100. Furthermore, a PCR marker designed from the sequence-variants, allowed to properly assign the phenotypes of all the individuals studied. These findings provide valuable information on the genetic control of a trait poorly known so far although selected for a long time in peach.

Publisher

Oxford University Press (OUP)

Subject

Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology

Reference51 articles.

1. The taxonomic value and structure of the peach leaf glands;Gregory;NY Cornell Agric Exp Sta Bull,1915

2. The diversity, ecology and evolution of extrafloral nectaries: current perspectives and future challenges;Marazzi;Ann Bot,2013

3. Extrafloral nectaries alter arthropod community structure and mediate peach (Prunus persica) plant defense;Mathews;Ecol Appl,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3