Circulating triglycerides are associated with human adipose tissue DNA methylation of genes linked to metabolic disease

Author:

Rönn Tina1ORCID,Perfilyev Alexander1,Jönsson Josefine1,Eriksson Karl-Fredrik2,Jørgensen Sine W3,Brøns Charlotte3,Gillberg Linn4,Vaag Allan5,Stener-Victorin Elisabet6,Ling Charlotte1

Affiliation:

1. Lund University Diabetes Centre, Lund University, Scania University Hospital Epigenetics and Diabetes Unit, Department of Clinical Sciences, , 205 02 Malmö , Sweden

2. Lund University Department of Clinical Sciences, Vascular Diseases, , 205 02 Malmö , Sweden

3. Rigshospitalet Department of Endocrinology, , Copenhagen , Denmark

4. University of Copenhagen Department of Biomedical Sciences, , Copenhagen , Denmark

5. Steno Diabetes Center Copenhagen , DK-2820, Gentofte , Denmark

6. Karolinska Institutet Department of Physiology and Pharmacology, , Stockholm , Sweden

Abstract

Abstract Dysregulation of circulating lipids is a central element for the metabolic syndrome. However, it is not well established whether human subcutaneous adipose tissue is affected by or affect circulating lipids through epigenetic mechanisms. Hence, our aim was to investigate the association between circulating lipids and DNA methylation levels in human adipose tissue. DNA methylation and gene expression were analysed genome-wide in subcutaneous adipose tissue from two different cohorts, including 85 men and 93 women, respectively. Associations between DNA methylation and circulating levels of triglycerides, low-density lipoprotein, high-density lipoprotein and total cholesterol were analysed. Causal mediation analyses tested if adipose tissue DNA methylation mediates the effects of triglycerides on gene expression or insulin resistance. We found 115 novel associations between triglycerides and adipose tissue DNA methylation, e.g. in the promoter of RFS1, ARID2 and HOXA5 in the male cohort (P ≤ 1.1 × 10−7), and 63 associations, e.g. within the gene body of PTPRN2 and COL6A3 in the female cohort. We further connected these findings to altered mRNA expression levels in adipose tissue (e.g. HOXA5, IL11 and FAM45B). Interestingly, there was no overlap between methylation sites associated with triglycerides in men and the sites found in women, which points towards sex-specific effects of triglycerides on the epigenome. Finally, a causal mediation analysis provided support for adipose tissue DNA methylation as a partial mediating factor between circulating triglycerides and insulin resistance. This study identified novel epigenetic alterations in adipose tissue associated with circulating lipids. Identified epigenetic changes seem to mediate effects of triglycerides on insulin resistance.

Funder

Åke Wiberg Foundation

Kungliga Fysiografiska Sällskapet i Lund; Magnus Bergvall Foundation

Swedish Foundation for Strategic Research

Novo Nordisk Foundation

Strategic Research Area Exodiab

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3