Natural disease history of a canine model of oligogenic RPGRIP1-cone-rod dystrophy establishes variable effects of previously and newly mapped modifier loci

Author:

Ripolles-Garcia Ana1,Murgiano Leonardo1,Ziolkowska Natalia2,Marinho Felipe Pompeo1,Roszak Karolina1,Iffrig Sommer1,Aguirre Gustavo D1,Miyadera Keiko1

Affiliation:

1. Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA 19104 , USA

2. Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Warmia and Mazury , Olsztyn 10-719 , Poland

Abstract

Abstract Canine RPGRIP1-cone-rod dystrophy (CRD), a model for human inherited retinal diseases (IRDs), was originally identified as autosomal recessive early-onset blindness. However, later studies revealed extensive phenotypic variability among RPGRIP1 mutants. This led to the identification of a homozygous MAP9 variant as a modifier associated with early-onset disease. Based on further phenotypic variation affecting cone photoreceptor function, we report mapping of L3 as an additional modifier locus, within a 4.1-Mb locus on canine chromosome 30. We establish the natural disease history of RPGRIP1-CRD based on up to 9-year long-term functional and structural retinal data from 58 dogs including 44 RPGRIP1 mutants grouped according to the modifier status. RPGRIP1 mutants affected by both MAP9 and L3 modifiers exhibited the most severe phenotypes with rapid disease progression. MAP9 alone was found to act as an overall accelerator of rod and cone diseases, while L3 had a cone-specific effect. Ultrastructural analysis of photoreceptors revealed varying degrees of rod and cone damage, while the connecting cilia appeared structurally preserved in all groups. We conclude that RPGRIP1-CRD is an oligogenic disease with at least three loci contributing to the pathogenesis. While the RPGRIP1 variant is required for developing the disease, MAP9 and L3 modifiers exacerbate the phenotype, individually and cumulatively. Oligogenic canine RPGRIP1-CRD illustrates the impact of multiple genetic modifiers on disease phenotype and thus has the potential to reveal new targets for broad-spectrum therapies for oligogenic or polygenic forms of human IRDs.

Funder

Margaret Q. Landenberger Research Foundation

National Eye Institute

National Institutes of Health

Van Sloun Foundation for Canine Genetic Research

Sanford and Susan Greenberg End Blindness Outstanding Achievement Prize

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3