Serum GFAP levels correlate with astrocyte reactivity, post-mortem brain atrophy and neurofibrillary tangles

Author:

Sánchez-Juan Pascual12ORCID,Valeriano-Lorenzo Elizabeth1,Ruiz-González Alicia1,Pastor Ana Belén1,Rodrigo Lara Hector3,López-González Francisco1,Zea-Sevilla María Ascensión1,Valentí Meritxell1,Frades Belen1,Ruiz Paloma1,Saiz Laura1,Burgueño-García Iván1,Calero Miguel124,del Ser Teodoro1,Rábano Alberto12ORCID

Affiliation:

1. Alzheimer’s Centre Reina Sofia-CIEN Foundation-ISCIII , Research Platforms, 28031 Madrid , Spain

2. CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases , 28029 Madrid , Spain

3. Banco de Cerebros de la Región de Murcia , Neuropathology Department, 30120 Murcia , Spain

4. Chronic Disease Programme, Instituto de Salud Carlos III , Madrid , Spain

Abstract

Abstract Glial fibrillary acidic protein (GFAP), a proxy of astrocyte reactivity, has been proposed as biomarker of Alzheimer’s disease. However, there is limited information about the correlation between blood biomarkers and post-mortem neuropathology. In a single-centre prospective clinicopathological cohort of 139 dementia patients, for which the time-frame between GFAP level determination and neuropathological assessment was exceptionally short (on average 139 days), we analysed this biomarker, measured at three time points, in relation to proxies of disease progression such as cognitive decline and brain weight. Most importantly, we investigated the use of blood GFAP to detect the neuropathological hallmarks of Alzheimer’s disease, while accounting for potential influences of the most frequent brain co-pathologies. The main findings demonstrated an association between serum GFAP level and post-mortem tau pathology (β = 12.85; P < 0.001) that was independent of amyloid deposits (β = 13.23; P = 0.02). A mediation analysis provided additional support for the role of astrocytic activation as a link between amyloid and tau pathology in Alzheimer’s disease. Furthermore, a negative correlation was observed between pre-mortem serum GFAP and brain weight at post-mortem (r = −0.35; P < 0.001). This finding, together with evidence of a negative correlation with cognitive assessments (r = −0.27; P = 0.005), supports the role of GFAP as a biomarker for disease monitoring, even in the late phases of Alzheimer’s disease. Moreover, the diagnostic performance of GFAP in advanced dementia patients was explored, and its discriminative power (area under the receiver operator characteristic curve at baseline = 0.91) in differentiating neuropathologically-confirmed Alzheimer’s disease dementias from non-Alzheimer’s disease dementias was determined, despite the challenging scenario of advanced age and frequent co-pathologies in these patients. Independently of Alzheimer’s disease, serum GFAP levels were shown to be associated with two other pathologies targeting the temporal lobes—hippocampal sclerosis (β = 3.64; P = 0.03) and argyrophilic grain disease (β = −6.11; P = 0.02). Finally, serum GFAP levels were revealed to be correlated with astrocyte reactivity, using the brain GFAP-immunostained area as a proxy (ρ = 0.21; P = 0.02). Our results contribute to increasing evidence suggesting a role for blood GFAP as an Alzheimer’s disease biomarker, and the findings offer mechanistic insights into the relationship between blood GFAP and Alzheimer’s disease neuropathology, highlighting its ties with tau burden. Moreover, the data highlighting an independent association between serum GFAP levels and other neuropathological lesions provide information for clinicians to consider when interpreting test results. The longitudinal design and correlation with post-mortem data reinforce the robustness of our findings. However, studies correlating blood biomarkers and neuropathological assessments are still scant, and further research is needed to replicate and validate these results in diverse populations.

Funder

Queen Sofia

ISCIII

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3