Revisiting distinct nerve excitability patterns in patients with amyotrophic lateral sclerosis

Author:

Stikvoort García Diederik J L1ORCID,Goedee H Stephan1,van Eijk Ruben P A12,van Schelven Leonard J3,van den Berg Leonard H1,Sleutjes Boudewijn T H M1ORCID

Affiliation:

1. Department of Neurology, Brain Centre Utrecht, University Medical Centre Utrecht , Utrecht, 3584CX , The Netherlands

2. Biostatistics and Research Support, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Universiteitsweg 100 , 3584CX, Utrecht , The Netherlands

3. Department of Medical Technology and Clinical Physics, University Medical Centre Utrecht , 3584CX, Utrecht , The Netherlands

Abstract

Abstract Amyotrophic lateral sclerosis is a devastating neurodegenerative disease, characterized by loss of central and peripheral motor neurons. Although the disease is clinically and genetically heterogeneous, axonal hyperexcitability is a commonly observed feature that has been suggested to reflect an early pathophysiological step linked to the neurodegenerative cascade. Therefore, it is important to clarify the mechanisms causing axonal hyperexcitability and how these relate to the clinical characteristics of patients. Measures derived directly from a nerve excitability recording are frequently used as study end points, although their biophysical basis is difficult to deduce. Mathematical models can aid in the interpretation but are reliable only when applied to group-averaged recordings. Consequently, model estimates of membrane properties cannot be compared with clinical characteristics or treatment effects in individual patients, posing a considerable limitation in heterogeneous diseases, such as amyotrophic lateral sclerosis. To address these challenges, we revisited nerve excitability using a new pattern analysis-based approach (principal component analysis). We evaluated disease-specific patterns of excitability changes and established their biophysical origins. Based on the observed patterns, we developed new compound measures of excitability that facilitate the implementation of this approach in clinical settings. We found that excitability changes in amyotrophic lateral sclerosis patients (n = 161, median disease duration = 11 months) were characterized by four unique patterns compared with controls (n = 50, age and sex matched). These four patterns were best explained by changes in resting membrane potential (modulated by Na+/K+ currents), slow potassium and sodium currents (modulated by their gating kinetics) and refractory properties of the nerve. Consequently, we were able to show that altered gating of slow potassium channels was associated with, and predictive of, the rate of progression of the disease on the amyotrophic lateral sclerosis functional rating scale. Based on these findings, we designed four composite measures that capture these properties to facilitate implementation outside this study. Our findings demonstrate that changes in nerve excitability in patients with amyotrophic lateral sclerosis are dominated by four distinct patterns, each with a distinct biophysical origin. Based on this new approach, we provide evidence that altered slow potassium-channel function might play a role in the rate of disease progression. The magnitudes of these patterns, quantified using a similar approach or our new composite measures, have potential as efficient measures to study membrane properties directly in amyotrophic lateral sclerosis patients, and thus aid prognostic stratification and trial design.

Funder

Dutch ALS Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3