Expression of 4E-BP1 in juvenile mice alleviates mTOR-induced neuronal dysfunction and epilepsy

Author:

Nguyen Lena H12,Xu Youfen1,Mahadeo Travorn1,Zhang Longbo1,Lin Tiffany V1,Born Heather A34,Anderson Anne E34,Bordey Angélique12

Affiliation:

1. Department of Neurosurgery, Yale University School of Medicine; New Haven, CT 06510, USA

2. Department of Cellular and Molecular Physiology, Yale University School of Medicine; New Haven, CT 06510, USA

3. Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital; Houston, TX 77030, USA

4. Department of Pediatrics, Baylor College of Medicine; Houston, TX 77030, USA

Abstract

Abstract Hyperactivation of the mechanistic target of rapamycin (mTOR) pathway during fetal neurodevelopment alters neuron structure and function, leading to focal malformation of cortical development (FMCD) and intractable epilepsy. Recent evidence suggests a role for dysregulated cap-dependent translation downstream of mTOR in the formation of FMCD and seizures. However, it is unknown whether modifying translation once the developmental pathologies are established can reverse neuronal abnormalities and seizures. Addressing these issues is crucial with regards to therapeutics since these neurodevelopmental disorders are predominantly diagnosed during childhood, when patients present with symptoms. Here, we report increased phosphorylation of the mTOR effector and translational repressor, 4E-BP1, in patient FMCD tissue and in a mouse model of FMCD. Using temporally regulated conditional gene expression systems, we found that expression of a constitutively active form of 4E-BP1 that resists phosphorylation by mTOR in juvenile mice reduced neuronal cytomegaly and corrected several neuronal electrophysiological alterations, including depolarized resting membrane potential, irregular firing pattern, and aberrant expression of HCN4 channels. Further, 4E-BP1 expression in juvenile FMCD mice after epilepsy onset resulted in improved cortical spectral activity and decreased spontaneous seizure frequency in adults. Overall, our study uncovered a remarkable plasticity of the juvenile brain that facilitates novel therapeutic opportunities to treat FMCD-related epilepsy during childhood with potentially long-lasting effects in adults.

Publisher

Oxford University Press (OUP)

Subject

Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3