Magnetic resonance reveals mitochondrial dysfunction and muscle remodelling in spinal muscular atrophy

Author:

Habets Laura E1,Bartels Bart1,Asselman Fay-Lynn2,Hooijmans Melissa T3,van den Berg Sandra3,Nederveen Aart J3,van der Pol W Ludo2,Jeneson Jeroen A L1

Affiliation:

1. Centre for Child Development, Exercise and Physical Literacy, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, P.O. Box 85090 3508 AB Utrecht, The Netherlands

2. UMC Utrecht Brain Centre, Department of Neurology and Neurosurgery, University Medical Centre Utrecht Brain Center, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands

3. Department of Radiology & Nuclear Medicine, Amsterdam Movement Sciences, Amsterdam University Medical Centre, location AMC, 1105 AZ Amsterdam, The Netherlands

Abstract

Abstract Genetic therapy has changed the prognosis of hereditary proximal spinal muscular atrophy, although treatment efficacy has been variable. There is a clear need for deeper understanding of underlying causes of muscle weakness and exercise intolerance in patients with this disease to further optimize treatment strategies. Animal models suggest that in addition to motor neuron and associated musculature degeneration, intrinsic abnormalities of muscle itself including mitochondrial dysfunction contribute to the disease etiology. To test this hypothesis in patients, we conducted the first in vivo clinical investigation of muscle bioenergetics. We recruited 15 patients and 15 healthy age and gender-matched control subjects in this cross-sectional clinico-radiological study. MRI and 31phosphorus magnetic resonance spectroscopy, the modality of choice to interrogate muscle energetics and phenotypic fiber type makeup, was performed of the proximal arm musculature in combination with fatiguing arm-cycling exercise and blood lactate testing. We derived bioenergetic parameter estimates including: blood lactate, intramuscular pH and inorganic phosphate accumulation during exercise, and muscle dynamic recovery constants. Linear correlation was used to test for associations between muscle morphological and bioenergetic parameters and clinico-functional measures of muscle weakness. MRI showed significant atrophy of triceps but not biceps muscles in patients. Maximal voluntary contraction force normalized to muscle cross-sectional area for both arm muscles was 1.4-fold lower in patients than in controls, indicating altered intrinsic muscle properties other than atrophy contributed to muscle weakness in this cohort. In vivo 31phosphorus magnetic resonance spectroscopy identified white-to-red remodeling of residual proximal arm musculature in patients on basis of altered intramuscular inorganic phosphate accumulation during arm-cycling in red versus white and intermediate myofibers. Blood lactate rise during arm-cycling was blunted in patients and correlated with muscle weakness and phenotypic muscle makeup. Post-exercise metabolic recovery was slower in residual intramuscular white myofibers in patients demonstrating mitochondrial ATP synthetic dysfunction in this particular fiber type. This study provides first in vivo evidence in patients that degeneration of motor neurons and associated musculature causing atrophy and muscle weakness in 5q spinal muscular atrophy type 3 and 4 is aggravated by disproportionate depletion of myofibers that contract fastest and strongest. Our finding of decreased mitochondrial ATP synthetic function selectively in residual white myofibers provides both a possible clue to understanding the apparent vulnerability of this particular fiber type in 5q spinal muscular atrophy type 3 and 4 as well as a new biomarker and target for therapy.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3