Aberrant neuronal connectivity in the cortex drives generation of seizures in rat absence epilepsy

Author:

Studer Florian1,Jarre Guillaume1,Pouyatos Benoit1,Nemoz Christian2,Brauer-Krisch Elke2,Muzelle Clémence3,Serduc Raphael3,Heinrich Christophe14,Depaulis Antoine1

Affiliation:

1. Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences , 38000 Grenoble , France

2. Biomedical beamline ID17, European Synchrotron Radiation Facility, ESRF , 38000 Grenoble , France

3. Univ. Grenoble Alpes, Inserm, UA7, STROBE , 38000 Grenoble , France

4. Univ Lyon, Université Claude Bernard Lyon 1, Inserm , Stem Cell and Brain Research Institute U1208, 69500 Bron , France

Abstract

Abstract Absence epilepsy belongs to genetic epilepsies and is characterized by recurrent generalized seizures that are concomitant with alterations of consciousness and associated with cognitive comorbidities. Little is known about the mechanisms leading to occurrence of epileptic seizures (i.e. epileptogenesis) and, in particular, it remains an open question as to whether neuronal hypersynchronization, a key feature in seizure initiation, could result from aberrant structural connectivity within neuronal networks endowing them with epileptic properties. In the present study, we addressed this question using a genetic model of absence epilepsy in the rat where seizures initiate in the whisker primary somatosensory cortex (wS1). We hypothesized that alterations in structural connectivity of neuronal networks within wS1 contribute to pathological neuronal synchronization responsible for seizures. First, we used rabies virus-mediated retrograde synaptic tracing and showed that cortical neurons located in both upper- and deep-layers of wS1 displayed aberrant and significantly increased connectivity in the genetic model of absence epilepsy, as highlighted by a higher number of presynaptic partners. Next, we showed at the functional level that disrupting these aberrant wS1 neuronal networks with synchrotron X-ray-mediated cortical microtransections drastically decreased both the synchronization and seizure power of wS1 neurons, as revealed by in vivo local field potential recordings with multichannel probes. Taken together, our data provide for the first time strong evidence that increased structural connectivity patterns of cortical neurons represent critical pathological substrates for increased neuronal synchronization and generation of absence seizures.

Funder

Institut National de la Santé et de la Recherche Médicale

Agence Nationale de la Recherche

LabEx CORTEX

Fondation Française pour la Recherche sur l’Epilepsie

Citizens United for Research in Epilepsy

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3