3 T MRI of rapid brain activity changes driven by subcallosal cingulate deep brain stimulation

Author:

Elias Gavin J. B.12ORCID,Germann Jürgen12ORCID,Boutet Alexandre123ORCID,Loh Aaron12,Li Bryan3,Pancholi Aditya1,Beyn Michelle E.1ORCID,Naheed Asma3,Bennett Nicole3,Pinto Jessica3,Bhat Venkat4,Giacobbe Peter5,Woodside D. Blake4,Kennedy Sidney H.24,Lozano Andres M.12

Affiliation:

1. Division of Neurosurgery, Department of Surgery, University Health Network and University of Toronto, Toronto, Canada

2. Krembil Research Institute, University of Toronto, Toronto, Canada

3. Joint Department of Medical Imaging, University of Toronto, Toronto, Canada

4. Department of Psychiatry, University Health Network and University of Toronto, Toronto, Canada

5. Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, Canada

Abstract

Abstract Deep brain stimulation targeting the subcallosal cingulate area (SCC-DBS), a hub with multiple axonal projections, has shown therapeutic potential for treatment-resistant mood disorders. While SCC-DBS drives long-term metabolic changes in corticolimbic circuits, the brain areas that are directly modulated by electrical stimulation of this region are not known. We used 3.0 Tesla functional MRI to map the topography of acute brain changes produced by stimulation in an initial cohort of twelve patients with fully implanted SCC-DBS devices. Four additional SCC-DBS patients were also scanned and employed as a validation cohort. Participants underwent resting state scans (n=78 acquisitions overall) during i) inactive DBS; ii) clinically optimal active DBS; iii) suboptimal active DBS. All scans were acquired within a single MRI session, each separated by a 5-minute washout period. Analysis of the amplitude of low frequency fluctuations (ALFF) in each sequence indicated that clinically optimal SCC-DBS reduced spontaneous brain activity in several areas, including bilateral dorsal anterior cingulate cortex (dACC), posterior cingulate cortex (PCC), precuneus, and left inferior parietal lobule (pBonferroni<0.0001). Stimulation-induced dACC signal reduction correlated with immediate within-session mood fluctuations, was greater at optimal versus suboptimal settings, and related to local cingulum bundle engagement. Moreover, linear modelling showed that immediate changes in dACC, PCC, and precuneus activity could predict individual long-term antidepressant improvement. A model derived from the primary cohort that incorporated ALFF changes in these three areas (along with pre-operative symptom severity) explained 55% of the variance in clinical improvement in that cohort. The same model also explained 93% of the variance in the out-of-sample validation cohort. Additionally all three brain areas exhibited significant changes in functional connectivity between active and inactive DBS states (pBonferroni<0.01). These results provide insight into the network-level mechanisms of SCC-DBS and point towards potential acute biomarkers of clinical response that could help to optimize and personalize this therapy.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3