Clearance of variant Creutzfeldt–Jakob disease prions in vivo by the Hsp70 disaggregase system

Author:

Thackray Alana M1ORCID,Lam Brian2ORCID,McNulty Erin E3,Nalls Amy V3,Mathiason Candace K3,Magadi Srivathsa Subramanya4,Jackson Walker S4,Andréoletti Olivier5,Marrero-Winkens Cristóbal6,Schätzl Hermann6,Bujdoso Raymond1ORCID

Affiliation:

1. Department of Veterinary Medicine, University of Cambridge , Cambridge CB3 0ES , UK

2. Medical Research Council Metabolic Diseases Unit, Wellcome–MRC Institute of Metabolic Science–Metabolic Research Laboratories, University of Cambridge , Cambridge CB2 0QQ , UK

3. Department of Microbiology, Immunology and Pathology, Colorado State University , Fort Collins, CO , USA

4. Wallenberg Center for Molecular Medicine, Department of Clinical and Experimental Medicine, Linköping University , 581 83 Linköping , Sweden

5. UMR INRA ENVT 1225 -Hôtes-Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse , 31076 Toulouse , France

6. Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, TRW 2D10 , Calgary, AB , Canada

Abstract

Abstract The metazoan Hsp70 disaggregase protects neurons from proteotoxicity that arises from the accumulation of misfolded protein aggregates. Hsp70 and its co-chaperones disassemble and extract polypeptides from protein aggregates for refolding or degradation. The effectiveness of the chaperone system decreases with age and leads to accumulation rather than removal of neurotoxic protein aggregates. Therapeutic enhancement of the Hsp70 protein disassembly machinery is proposed to counter late-onset protein misfolding neurodegenerative disease that may arise. In the context of prion disease, it is not known whether stimulation of protein aggregate disassembly paradoxically leads to enhanced formation of seeding competent species of disease-specific proteins and acceleration of neurodegenerative disease. Here we have tested the hypothesis that modulation of Hsp70 disaggregase activity perturbs mammalian prion-induced neurotoxicity and prion seeding activity. To do so we used prion protein (PrP) transgenic Drosophila that authentically replicate mammalian prions. RNASeq identified that Hsp70, DnaJ-1 and Hsp110 gene expression was downregulated in prion-exposed PrP Drosophila. We demonstrated that RNAi knockdown of Hsp110 or DnaJ-1 gene expression in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila enhanced neurotoxicity, whereas overexpression mitigated toxicity. Strikingly, prion seeding activity in variant Creutzfeldt–Jakob disease prion-exposed human PrP Drosophila was ablated or reduced by Hsp110 or DnaJ-1 overexpression, respectively. Similar effects were seen in scrapie prion-exposed ovine PrP Drosophila with modified Hsp110 or DnaJ-1 gene expression. These unique observations show that the metazoan Hsp70 disaggregase facilitates the clearance of mammalian prions and that its enhanced activity is a potential therapeutic strategy for human prion disease.

Funder

Alberta Prion Research Institute

National Institues of Health

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3