Extracellular vesicles set the stage for brain plasticity and recovery by multimodal signalling

Author:

Hermann Dirk M1ORCID,Peruzzotti-Jametti Luca23,Giebel Bernd4,Pluchino Stefano2ORCID

Affiliation:

1. Department of Neurology, University Hospital Essen, University of Duisburg-Essen , D-45122 Essen , Germany

2. Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge , Cambridge CB2 0AH , UK

3. Department of Metabolism, Digestion and Reproduction, Imperial College London , London W12 0NN , UK

4. Institute of Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen , D-45147 Essen , Germany

Abstract

Abstract Extracellular vesicles (EVs) are extremely versatile naturally occurring membrane particles that convey complex signals between cells. EVs of different cellular sources are capable of inducing striking therapeutic responses in neurological disease models. Differently from pharmacological compounds that act by modulating defined signalling pathways, EV-based therapeutics possess multiple abilities via a variety of effectors, thus allowing the modulation of complex disease processes that may have very potent effects on brain tissue recovery. When applied in vivo in experimental models of neurological diseases, EV-based therapeutics have revealed remarkable effects on immune responses, cell metabolism and neuronal plasticity. This multimodal modulation of neuroimmune networks by EVs profoundly influences disease processes in a highly synergistic and context-dependent way. Ultimately, the EV-mediated restoration of cellular functions helps to set the stage for neurological recovery. With this review we first outline the current understanding of the mechanisms of action of EVs, describing how EVs released from various cellular sources identify their cellular targets and convey signals to recipient cells. Then, mechanisms of action applicable to key neurological conditions such as stroke, multiple sclerosis and neurodegenerative diseases are presented. Pathways that deserve attention in specific disease contexts are discussed. We subsequently showcase considerations about EV biodistribution and delineate genetic engineering strategies aiming at enhancing brain uptake and signalling. By sketching a broad view of EV-orchestrated brain plasticity and recovery, we finally define possible future clinical EV applications and propose necessary information to be provided ahead of clinical trials. Our goal is to provide a steppingstone that can be used to critically discuss EVs as next generation therapeutics for brain diseases.

Funder

German Research Foundation

German Federal Ministry of Education and Science

Fondazione Italiana Sclerosi Multipla

Italian Multiple Sclerosis Association

Isaac Newton Trust

Ferblanc Foundation

National MS Society

Bascule Charitable Trust

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3