Advanced biological ageing predicts future risk for neurological diagnoses and clinical examination findings

Author:

McMurran Christopher E12ORCID,Wang Yunzhang1,Mak Jonathan K L1ORCID,Karlsson Ida K1,Tang Bowen1,Ploner Alexander1ORCID,Pedersen Nancy L1,Hägg Sara1ORCID

Affiliation:

1. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet , Stockholm SE 171 77 , Sweden

2. Department of Clinical Neurosciences, University of Cambridge , Cambridge CB2 0QQ , UK

Abstract

Abstract Age is a dominant risk factor for some of the most common neurological diseases. Biological ageing encompasses interindividual variation in the rate of ageing and can be calculated from clinical biomarkers or DNA methylation data amongst other approaches. Here, we tested the hypothesis that a biological age greater than one's chronological age affects the risk of future neurological diagnosis and the development of abnormal signs on clinical examination. We analysed data from the Swedish Adoption/Twin Study of Aging (SATSA): a cohort with 3175 assessments of 802 individuals followed-up over several decades. Six measures of biological ageing were generated: two physiological ages (created from bedside clinical measurements and standard blood tests) and four blood methylation age measures. Their effects on future stroke, dementia or Parkinson's disease diagnosis, or development of abnormal clinical signs, were determined using survival analysis, with and without stratification by twin pairs. Older physiological ages were associated with ischaemic stroke risk; for example one standard deviation advancement in baseline PhenoAgePhys or KDMAgePhys residual increased future ischaemic stroke risk by 29.2% [hazard ratio (HR): 1.29, 95% confidence interval (CI) 1.06–1.58, P = 0.012] and 42.9% (HR 1.43, CI 1.18–1.73, P = 3.1 × 10−4), respectively. In contrast, older methylation ages were more predictive of future dementia risk, which was increased by 29.7% (HR 1.30, CI 1.07–1.57, P = 0.007) per standard deviation advancement in HorvathAgeMeth. Older physiological ages were also positively associated with future development of abnormal patellar or pupillary reflexes, and the loss of normal gait. Measures of biological ageing can predict clinically relevant pathology of the nervous system independent of chronological age. This may help to explain variability in disease risk between individuals of the same age and strengthens the case for trials of geroprotective interventions for people with neurological disorders.

Funder

NIH

MacArthur Foundation Research Network on Successful Aging

Swedish Council for Working Life and Social Research

Swedish Research Council

FORTE

Loo & Hans Osterman Foundation

Foundation for Geriatric Diseases

Magnus Bergwall Foundation

King Gustaf V’s and Queen Victoria’s Foundation of Freemasons

Karolinska Institutet Foundation

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3