Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis

Author:

Gross Amanda L12,Gray-Edwards Heather L1,Bebout Cassie N1,Ta Nathan L3,Nielsen Kayly1,Brunson Brandon L2,Mercado Kalajan R Lopez1,Osterhoudt Devin E1,Batista Ana Rita45,Maitland Stacy45,Seyfried Thomas N3,Sena-Esteves Miguel45,Martin Douglas R12

Affiliation:

1. Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA

2. Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA

3. Biology Department, Boston College, Chestnut Hill, MA 02467 USA

4. Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA

5. Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA

Abstract

Abstract GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3