Startle responses in Duchenne muscular dystrophy: a novel biomarker of brain dystrophin deficiency

Author:

Maresh Kate12ORCID,Papageorgiou Andriani1,Ridout Deborah34,Harrison Neil A5,Mandy William6,Skuse David7,Muntoni Francesco124

Affiliation:

1. Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH , UK

2. Queen Square Centre for Neuromuscular Diseases, University College London , London WC1N 3BG , UK

3. Population, Policy and Practice Research and Teaching Department, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH , UK

4. NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH , UK

5. Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University , Cardiff CF14 4XN , UK

6. Department of Clinical, Educational and Health Psychology, University College London , London WC1E 6BT , UK

7. Department of Behavioural and Brain Sciences, UCL Great Ormond Street Institute of Child Health , London WC1N 1EH , UK

Abstract

Abstract Duchenne muscular dystrophy (DMD) is characterized by loss of dystrophin in muscle, however patients also have variable degree of intellectual disability and neurobehavioural co-morbidities. In contrast to muscle, in which a single full-length dystrophin isoform (Dp427) is produced, multiple isoforms are produced in the brain, and their deficiency accounts for the variability of CNS manifestations, with increased risk of comorbidities in patients carrying mutations affecting the 3′ end of the gene, which disrupt expression of shorter Dp140 and Dp71 isoforms. A mouse model (mdx mouse) lacks Dp427 in muscle and CNS and exhibits exaggerated startle responses to threat, linked to the deficiency of dystrophin in limbic structures such as the amygdala, which normalize with postnatal brain dystrophin-restoration therapies. A pathological startle response is not a recognized feature of DMD, and its characterization has implications for improved clinical management and translational research. To investigate startle responses in DMD, we used a novel fear-conditioning task in an observational study of 56 males aged 7–12 years (31 affected boys, mean age 9.7 ± 1.8 years; 25 controls, mean age 9.6 ± 1.4 years). Trials of two neutral visual stimuli were presented to participants: one ‘safe’ cue presented alone; one ‘threat’ cue paired with an aversive noise to enable conditioning of physiological startle responses (skin conductance response and heart rate). Retention of conditioned physiological responses was subsequently tested by presenting both cues without the aversive noise in an ‘Extinction’ phase. Primary outcomes were the initial unconditioned skin conductance and change in heart rate responses to the aversive ‘threat’ and acquisition and retention of conditioned responses after conditioning. Secondary and exploratory outcomes were neuropsychological measures and genotype associations. The mean unconditioned skin conductance response was greater in the DMD group than controls [mean difference 3.0 µS (1.0, 5.1); P = 0.004], associated with a significant threat-induced bradycardia only in the patient group [mean difference –8.7 bpm (–16.9, –0.51); P = 0.04]. Participants with DMD found the task more aversive than controls, with increased early termination rates during the Extinction phase (26% of DMD group versus 0% of controls; P = 0.007). This study provides the first evidence that boys with DMD show similar increased unconditioned startle responses to threat to the mdx mouse, which in the mouse respond to brain dystrophin restoration. Our study provides new insights into the neurobiology underlying the complex neuropsychiatric co-morbidities in DMD and defines an objective measure of this CNS phenotype, which will be valuable for future CNS-targeted dystrophin-restoration studies.

Funder

Great Ormond Street Hospital Children’s Charity

MRC

Brain Involvement iN Dystrophinopathies

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Reference91 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3