Multimodal layer modelling reveals in vivo pathology in amyotrophic lateral sclerosis

Author:

Northall Alicia12ORCID,Doehler Juliane12,Weber Miriam3,Tellez Igor1,Petri Susanne4,Prudlo Johannes56,Vielhaber Stefan3,Schreiber Stefanie237ORCID,Kuehn Esther1789

Affiliation:

1. Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg , Magdeburg, 39120 , Germany

2. German Center for Neurodegenerative Diseases (DZNE) , Magdeburg, 39120 , Germany

3. Department of Neurology, Otto-von-Guericke University Magdeburg (OVGU) , Magdeburg, 39120 , Germany

4. Department of Neurology, Hannover Medical School (MHH) , Hanover, 30625 , Germany

5. Department of Neurology, Rostock University Medical Centre , Rostock, 18147 , Germany

6. German Center for Neurodegenerative Diseases (DZNE) , Rostock, 18147 , Germany

7. Center for Behavioral Brain Sciences (CBBS) Magdeburg , Magdeburg, 39120 , Germany

8. German Center for Neurodegenerative Diseases (DZNE) , Tübingen, 72076 , Germany

9. Hertie Institute for Clinical Brain Research (HIH) , Tübingen, 72076 , Germany

Abstract

Abstract Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease characterised by the loss of motor control. Current understanding of ALS pathology is largely based on post-mortem investigations at advanced disease stages. A systematic in-vivo description of the microstructural changes that characterise early-stage ALS, and their subsequent development, is so far lacking. Recent advances in ultra-high field (7 T) MRI data modelling allow us to investigate cortical layers in-vivo. Given the layer-specific and topographic signature of pathology in ALS, we combined submillimeter structural 7T-MRI data (qT1, QSM), functional localisers of body parts (upper limb, lower limb, face) and automated layer modelling to systematically describe pathology in the primary motor cortex (M1), in 12 living ALS-patients with reference to 12 age-, gender-, handedness- and education-matched controls. Longitudinal sampling was performed for a subset of patients. We calculated multimodal pathology maps for each layer (superficial layer, layer 5a, layer 5b, layer 6) of M1 to identify hotspots of demyelination, iron and calcium accumulation in different cortical fields. We show preserved mean cortical thickness and layer architectures of M1, despite significantly increased iron in layer 6 and significantly increased calcium in layer 5a and superficial layer, in patients compared to controls. The behaviorally first-affected cortical field shows significantly increased iron in L6 compared to other fields, while calcium accumulation is atopographic and significantly increased in the low-myelin borders between cortical fields compared to the fields themselves. A subset of patients with longitudinal data shows that the low-myelin borders are particularly disrupted, and that calcium hotspots but to a lesser extent iron hotspots precede demyelination. Finally, we highlight that a very-slow progressing patient (P4) shows a distinct pathology profile compared to the other patients. Our data shows that layer-specific markers of in-vivo pathology can be identified in ALS-patients with a single 7T-MRI measurement after first diagnosis, and that such data provide critical insights into the individual disease state. Our data highlight the non-topographic architecture of ALS disease spread, and the role of calcium rather than iron accumulation in predicting future demyelination. We also highlight a potentially important role of low-myelin borders, that are known to connect to multiple areas within the M1 architecture, in disease spread. Importantly, the distinct pathology profile of a very-slow progressing patient (P4) highlights a distinction between disease duration and pathology progression. Our findings demonstrate the importance of in-vivo histology for the diagnosis and prognosis of neurodegenerative diseases such as ALS.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3