Driving motor cortex oscillations modulates bradykinesia in Parkinson’s disease

Author:

Guerra Andrea1ORCID,Colella Donato2,Giangrosso Margherita2,Cannavacciuolo Antonio2,Paparella Giulia1,Fabbrini Giovanni12,Suppa Antonio12,Berardelli Alfredo12,Bologna Matteo12

Affiliation:

1. IRCCS Neuromed, Pozzilli (IS), Italy

2. Department of Human Neurosciences, Sapienza University of Rome, Italy

Abstract

Abstract In patients with Parkinson’s disease, beta (β) and gamma (γ) oscillations are altered in the basal ganglia, and this abnormality contributes to the pathophysiology of bradykinesia. However, it is unclear whether β and γ rhythms at the primary motor cortex (M1) level influence bradykinesia. Transcranial alternating current stimulation (tACS) can modulate cortical rhythms by entraining endogenous oscillations. We tested whether β- and γ-tACS on M1 modulate bradykinesia in patients with Parkinson’s disease by analysing the kinematic features of repetitive finger tapping, including movement amplitude, velocity and sequence effect, recorded during β-, γ- and sham tACS. We also verified whether possible tACS-induced bradykinesia changes depended on modifications in specific M1 circuits, as assessed by short-interval intracortical inhibition and short-latency afferent inhibition. Patients were studied OFF and ON dopaminergic therapy. Results were compared to those obtained in a group of healthy subjects. In patients, movement velocity significantly worsened during β-tACS and movement amplitude improved during γ-tACS, while the sequence effect did not change. In addition, short-latency afferent inhibition decreased (reduced inhibition) during β-tACS and short-interval intracortical inhibition decreased during both γ- and β-tACS in Parkinson’s disease. The effects of tACS were comparable between OFF and ON sessions. In patients OFF therapy, the degree of short-interval intracortical inhibition modulation during β- and γ-tACS correlated with movement velocity and amplitude changes. Moreover, there was a positive correlation between the effect of γ-tACS on movement amplitude and motor symptoms severity. Our results show that cortical β and γ oscillations are relevant in the pathophysiology of bradykinesia in Parkinson’s disease and that changes in inhibitory GABA-A-ergic interneuronal activity may reflect compensatory M1 mechanisms to counteract bradykinesia. In conclusion, abnormal oscillations at the M1 level of the basal ganglia-thalamo-cortical network play a relevant role in the pathophysiology of bradykinesia in Parkinson’s disease.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3