Periventricular remyelination failure in multiple sclerosis: a substrate for neurodegeneration

Author:

Tonietto Matteo12ORCID,Poirion Emilie1,Lazzarotto Andrea13,Ricigliano Vito13,Papeix Caroline14,Bottlaender Michel2,Bodini Benedetta13,Stankoff Bruno13ORCID

Affiliation:

1. Paris Brain Institute, Sorbonne Université, ICM, CNRS, Inserm , Paris , France

2. Service Hospitalier Frédéric Joliot, Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps , Orsay , France

3. Neurology Department, St Antoine Hospital, APHP , Paris , France

4. Neurology Department, Pitié-Salpêtrière Hospital, APHP , Paris , France

Abstract

Abstract In multiple sclerosis, spontaneous remyelination is generally incomplete and heterogeneous across patients. A high heterogeneity in remyelination may also exist across lesions within the same individual, suggesting the presence of local factors interfering with myelin regeneration. In this study we explored in vivo the regional distribution of myelin repair and investigated its relationship with neurodegeneration. We first took advantage of the myelin binding property of the amyloid radiotracer 11C-PiB to conduct a longitudinal 11C-PiB PET study in an original cohort of 19 participants with a relapsing–remitting form of multiple sclerosis, followed-up over a period of 1–4 months. We then replicated our results on an independent cohort of 40 people with multiple sclerosis followed-up over 1 year with magnetization transfer imaging, an MRI metrics sensitive to myelin content. For each imaging method, voxel-wise maps of myelin content changes were generated according to modality-specific thresholds. We demonstrated a selective failure of remyelination in periventricular white matter lesions of people with multiple sclerosis in both cohorts. In both the original and the replication cohort, we estimated that the probability of demyelinated voxels to remyelinate over the follow-up increased significantly as a function of the distance from ventricular CSF. Enlarged choroid plexus, a recently discovered biomarker linked to neuroinflammation, was found to be associated with the periventricular failure of remyelination in the two cohorts (r = −0.79, P = 0.0018; r = −0.40, P = 0.045, respectively), suggesting a role of the brain–CSF barrier in affecting myelin repair in surrounding tissues. In both cohorts, the failure of remyelination in periventricular white matter lesions was associated with lower thalamic volume (r = 0.86, P < 0.0001; r = 0.33; P = 0.069, respectively), an imaging marker of neurodegeneration. Interestingly, we also showed an association between the periventricular failure of remyelination and regional cortical atrophy that was mediated by the number of cortex-derived tracts passing through periventricular white matter lesions, especially in patients at the relapsing–remitting stage. Our findings demonstrate that lesion proximity to ventricles is associated with a failure of myelin repair and support the hypothesis that a selective periventricular remyelination failure in combination with the large number of tracts connecting periventricular lesions with cortical areas is a key mechanism contributing to cortical damage in multiple sclerosis.

Funder

European Leukodystrophy Association

INSERM-DHOS

Programme Hospitalier de Recherche Clinique

Agence nationale de la Recherche

Fondation pour la recherche médicale

Commissariat aux energies atomique

ARSEP

ECTRIMS

Assistance Publique des Hôpitaux de Paris

Investissements d’avenir

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3