Cdc42GAP deficiency contributes to the Alzheimer’s disease phenotype

Author:

Zhu Mengjuan1,Xiao Bin1,Xue Tao1,Qin Sifei1,Ding Jiuyang2,Wu Yue1,Tang Qingqiu1,Huang Mengfan1,Zhao Na2,Ye Yingshan1,Zhang Yuning1,Zhang Boya1,Li Juan3,Guo Fukun4,Jiang Yong1ORCID,Zhang Lin3,Zhang Lu1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Functional Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical Sciences, Department of Otorhinolaryngology-Head and Neck Surgery of the Third Affiliated Hospital, Southern Medical University , Guangzhou 510515 , China

2. School of Forensic Medicine, Guizhou Medical University , Guiyang 550004 , China

3. Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Center for Orthopedic Surgery of the Third Affiliated Hospital, Southern Medical University , Guangzhou 510515 , China

4. Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation , Cincinnati, OH 45229-3026 , USA

Abstract

Abstract Alzheimer’s disease, the most common cause of dementia, is a chronic degenerative disease with typical pathological features of extracellular senile plaques and intracellular neurofibrillary tangles and a significant decrease in the density of neuronal dendritic spines. Cdc42 is a member of the small G protein family that plays an important role in regulating synaptic plasticity and is regulated by Cdc42GAP, which switches Cdc42 from active GTP-bound to inactive GDP-bound states regulating downstream pathways via effector proteins. However, few studies have focused on Cdc42 in the progression of Alzheimer’s disease. In a heterozygous Cdc42GAP mouse model that exhibited elevated Cdc42-GTPase activity accompanied by increased Cdc42-PAK1-cofilin signalling, we found impairments in cognitive behaviours, neuron senescence, synaptic loss with depolymerization of F-actin and the pathological phenotypes of Alzheimer’s disease, including phosphorylated tau (p-T231, AT8), along with increased soluble and insoluble Aβ1–42 and Aβ1–40, which are consistent with typical Alzheimer’s disease mice. Interestingly, these impairments increased significantly with age. Furthermore, the results of quantitative phosphoproteomic analysis of the hippocampus of 11-month-old GAP mice suggested that Cdc42GAP deficiency induces and accelerates Alzheimer’s disease-like phenotypes through activation of GSK-3β by dephosphorylation at Ser9, Ser389 and/or phosphorylation at Tyr216. In addition, overexpression of dominant-negative Cdc42 in the primary hippocampal and cortical neurons of heterozygous Cdc42GAP mice reversed synaptic loss and tau hyperphosphorylation. Importantly, the Cdc42 signalling pathway, Aβ1–42, Aβ1–40 and GSK-3β activity were increased in the cortical sections of Alzheimer’s disease patients compared with those in healthy controls. Together, these data indicated that Cdc42GAP is involved in regulating Alzheimer’s disease-like phenotypes such as cognitive deficits, dendritic spine loss, phosphorylated tau (p-T231, AT8) and increased soluble and insoluble Aβ1–42 and Aβ1–40, possibly through the activation of GSK-3β, and these impairments increased significantly with age. Thus, we provide the first evidence that Cdc42 is involved in the progression of Alzheimer’s disease-like phenotypes, which may provide new targets for Alzheimer’s disease treatment.

Funder

Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

GDMPA Key Laboratory Project of Scientific and Technological Innovation

Colleges Pearl River Scholar Funded Scheme

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3