The visual cortex in the blind but not the auditory cortex in the deaf becomes multiple-demand regions

Author:

Duymuş Hasan12ORCID,Verma Mohini34,Güçlütürk Yasemin5,Öztürk Mesut5,Varol Ayşe B3,Kurt Şehmus2,Gezici Tamer3,Akgür Berhan F3,Giray İrem3,Öksüz Elif E2,Farooqui Ausaf A1346ORCID

Affiliation:

1. Department of Psychology, Bilkent University , Ankara, 06800 , Türkiye

2. Department of Psychology, Ankara Yildirim Beyazıt University , Ankara, 06760 , Türkiye

3. Department of Neuroscience, Bilkent University , Ankara, 06800 , Türkiye

4. Aysel Sabuncu Brain Research Center, Bilkent University , Ankara, 06800 , Türkiye

5. Sign Language Program, TÖMER, Ankara University , Ankara, 06100 , Türkiye

6. National Magnetic Resonance Research Center, Bilkent University , Ankara, 06800 , Türkiye

Abstract

Abstract The fate of deprived sensory cortices (visual regions in the blind and auditory regions in the deaf) exemplifies the extent to which experience can change brain regions. These regions are frequently seen to activate during tasks involving other sensory modalities, leading many authors to infer that these regions have started to process sensory information of other modalities. However, such observations can also imply that these regions are now activating in response to any task event, regardless of the sensory modality. Activating in response to task events, irrespective of the sensory modality involved, is a feature of the multiple-demands (MD) network. This is a set of regions within the frontal and parietal cortices that activate in response to any kind of control demand. Thus, demands as diverse as attention, perceptual difficulty, rule-switching, updating working memory, inhibiting responses, decision-making and difficult arithmetic all activate the same set of regions that are thought to instantiate domain-general cognitive control and underpin fluid intelligence. We investigated whether deprived sensory cortices, or foci within them, become part of the MD network. We tested whether the same foci within the visual regions of the blind and auditory regions of the deaf activated in response to different control demands. We found that control demands related to updating auditory working memory, difficult tactile decisions, time-duration judgments and sensorimotor speed all activated the entire bilateral occipital regions in the blind but not in the sighted. These occipital regions in the blind were the only regions outside the canonical frontoparietal MD regions to show such activation in response to multiple control demands. Furthermore, compared with the sighted, these occipital regions in the blind had higher functional connectivity with frontoparietal MD regions. Early deaf, in contrast, did not activate their auditory regions in response to different control demands, showing that auditory regions do not become MD regions in the deaf. We suggest that visual regions in the blind do not take a new sensory role but become part of the MD network, and this is not a response of all deprived sensory cortices but a feature unique to the visual regions.

Funder

Scientific and Technological Research Council of Turkey

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3