Machine phenotyping of cluster headache and its response to verapamil

Author:

Tso Amy R1,Brudfors Mikael2ORCID,Danno Daisuke3,Grangeon Lou3,Cheema Sanjay3ORCID,Matharu Manjit3ORCID,Nachev Parashkev1

Affiliation:

1. High-Dimensional Neurology Group, University College London Queen Square Institute of Neurology, London, UK

2. Wellcome Centre for Human Neuroimaging, University College London, London, UK

3. Headache and Facial Pain Group, University College London Queen Square Institute of Neurology, London, UK

Abstract

Abstract Cluster headache is characterized by recurrent, unilateral attacks of excruciating pain associated with ipsilateral cranial autonomic symptoms. Although a wide array of clinical, anatomical, physiological, and genetic data have informed multiple theories about the underlying pathophysiology, the lack of a comprehensive mechanistic understanding has inhibited, on the one hand, the development of new treatments and, on the other, the identification of features predictive of response to established ones. The first-line drug, verapamil, is found to be effective in only half of all patients, and after several weeks of dose escalation, rendering therapeutic selection both uncertain and slow. Here we use high-dimensional modelling of routinely acquired phenotypic and MRI data to quantify the predictability of verapamil responsiveness and to illuminate its neural dependants, across a cohort of 708 patients evaluated for cluster headache at the National Hospital for Neurology and Neurosurgery between 2007 and 2017. We derive a succinct latent representation of cluster headache from non-linear dimensionality reduction of structured clinical features, revealing novel phenotypic clusters. In a subset of patients, we show that individually predictive models based on gradient boosting machines can predict verapamil responsiveness from clinical (410 patients) and imaging (194 patients) features. Models combining clinical and imaging data establish the first benchmark for predicting verapamil responsiveness, with an area under the receiver operating characteristic curve of 0.689 on cross-validation (95% confidence interval: 0.651 to 0.710) and 0.621 on held-out data. In the imaged patients, voxel-based morphometry revealed a grey matter cluster in lobule VI of the cerebellum (−4, −66, −20) exhibiting enhanced grey matter concentrations in verapamil non-responders compared with responders (familywise error-corrected P = 0.008, 29 voxels). We propose a mechanism for the therapeutic effect of verapamil that draws on the neuroanatomy and neurochemistry of the identified region. Our results reveal previously unrecognized high-dimensional structure within the phenotypic landscape of cluster headache that enables prediction of treatment response with modest fidelity. An analogous approach applied to larger, globally representative datasets could facilitate data-driven redefinition of diagnostic criteria and stronger, more generalizable predictive models of treatment responsiveness.

Funder

NIHR UCLH Biomedical Research Centre

Wellcome Trust

Publisher

Oxford University Press (OUP)

Subject

Clinical Neurology

Reference30 articles.

1. Afferent areas in the cerebellum connected with the limbs;Adrian;Brain,1943

2. The anterior hypothalamus in cluster headache;Arkink;Cephalalgia,2017

3. Unified segmentation;Ashburner;Neuroimage,2005

4. Representation learning: a review and new perspectives;Bengio;IEEE Trans Pattern Anal Mach Intell,2013

5. Epidemiology and genetics of cluster headache;Bjørn Russell;Lancet Neurol,2004

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3