Neural effective connectivity explains subjective fatigue in stroke

Author:

Ondobaka Sasha12,De Doncker William2ORCID,Ward Nick23,Kuppuswamy Annapoorna2

Affiliation:

1. CoreMind Ltd, NW1 8NP London, UK

2. Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, WC1N 3BG London, UK

3. NHNN, University College London, WC1N 3BG London, UK

Abstract

Abstract Persistent fatigue is a major debilitating symptom in many psychiatric and neurological conditions, including stroke. Post-stroke fatigue has been linked to low corticomotor excitability. Yet, it remains elusive as to what the neuronal mechanisms are that underlie motor cortex excitability and chronic persistence of fatigue. In this cross-sectional observational study, in two experiments we examined a total of 59 non-depressed stroke survivors with minimal motoric and cognitive impairments using ‘resting-state’ MRI and single- and paired-pulse transcranial magnetic stimulation. In the first session of Experiment 1, we assessed resting motor thresholds—a typical measure of cortical excitability—by applying transcranial magnetic stimulation to the primary motor cortex (M1) and measuring motor-evoked potentials in the hand affected by stroke. In the second session, we measured their brain activity with resting-state MRI to assess effective connectivity interactions at rest. In Experiment 2 we examined effective inter-hemispheric connectivity in an independent sample of patients using paired-pulse transcranial magnetic stimulation. We also assessed the levels of non-exercise induced, persistent fatigue using Fatigue Severity Scale (FSS-7), a self-report questionnaire that has been widely applied and validated across different conditions. We used spectral dynamic causal modelling in Experiment 1 and paired-pulse transcranial magnetic stimulation in Experiment 2 to characterize how neuronal effective connectivity relates to self-reported post-stroke fatigue. In a multiple regression analysis, we used the balance in inhibitory connectivity between homologue regions in M1 as the main predictor, and have included lesioned hemisphere, resting motor threshold and levels of depression as additional predictors. Our novel index of inter-hemispheric inhibition balance was a significant predictor of post-stroke fatigue in Experiment 1 (β = 1.524, P = 7.56 × 10−5, confidence interval: 0.921 to 2.127) and in Experiment 2 (β = 0.541, P = 0.049, confidence interval: 0.002 to 1.080). In Experiment 2, depression scores and corticospinal excitability, a measure associated with subjective fatigue, also significantly accounted for variability in fatigue. We suggest that the balance in inter-hemispheric inhibitory effects between primary motor regions can explain subjective post-stroke fatigue. Findings provide novel insights into neural mechanisms that underlie persistent fatigue.

Funder

Wellcome Trust

Stroke Association

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3