Spectrum of sublytic astrocytopathy in neuromyelitis optica

Author:

Guo Yong12,Lennon Vanda A1234,Parisi Joseph E13,Popescu Bogdan5,Vasquez Christina1,Pittock Sean J123,Howe Charles L124,Lucchinetti Claudia F12

Affiliation:

1. Department of Neurology, Mayo Clinic, Rochester, MN, USA

2. Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA

3. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

4. Department of Immunology, Mayo Clinic, Rochester, MN, USA

5. Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada

Abstract

Abstract Neuromyelitis optica is an autoimmune inflammatory disorder targeting aquaporin-4 water channels in CNS astrocytes. Histopathologic descriptions of astrocytic lesions reported in neuromyelitis optica to date have emphasized a characteristic loss of aquaporin-4, with deposition of IgG and complement and lysis of astrocytes, but sublytic reactions have been underappreciated. We performed a multi-modality study of 23 neuromyelitis optica autopsy cases (clinically and/or pathologically-confirmed; 337 tissue blocks). By evaluating astrocytic morphology, immunohistochemistry and AQP4 RNA transcripts, and their associations with demyelinating activity, we documented a spectrum of astrocytopathy in addition to complement deposition, microglial reaction, granulocyte infiltration and regenerating activity. Within advanced demyelinating lesions, and in periplaque areas, there was remarkable hypertrophic astrogliosis, more subtle than astrocytic lysis. A degenerative component was suggested by “dystrophic” morphology, cytoplasmic vacuolation, Rosenthal fibres and associated stress protein markers. The abundance of AQP4 mRNA transcripts in sublytic reactive astrocytes devoid of aquaporin-4 protein supported in vivo restoration following IgG-induced aquaporin-4 endocytosis/degradation. Astrocytic alterations extending beyond demyelinating lesions speak to astrocytopathy being an early and primary event in the evolving neuromyelitis optica lesion. Focal astrocytopathy observed without aquaporin-4 loss or lytic complement component deposition verifies that astrocytic reactions in NMO are not solely dependent on IgG-mediated aquaporin-4 loss or lysis by complement or by IgG-dependent leukocyte mediators. We conclude that neuromyelitis optica reflects a global astrocytopathy, initiated by binding of IgG to aquaporin-4 and not simply definable by demyelination and astrocytic lysis. The spectrum of astrocytic morphological changes in neuromyelitis optica attests to the complexity of factors influencing the range of astrocytic physiological responses to a targeted attack by aquaporin-4-specific IgG. Sublytic astrocytic reactions are no doubt an important determinant of the lesion’s evolution and potential for repair. Pharmacological manipulation of the astrocytic stress response may offer new avenues for therapeutic intervention.

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3