Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer’s disease

Author:

Younan Diana1ORCID,Petkus Andrew J1,Widaman Keith F2,Wang Xinhui1,Casanova Ramon3,Espeland Mark A3,Gatz Margaret1,Henderson Victor W4,Manson JoAnn E5,Rapp Stephen R3,Sachs Bonnie C3,Serre Marc L6,Gaussoin Sarah A3,Barnard Ryan3,Saldana Santiago3,Vizuete William6,Beavers Daniel P3,Salinas Joel A7,Chui Helena C1,Resnick Susan M8,Shumaker Sally A3,Chen Jiu-Chiuan1

Affiliation:

1. University of Southern California, 2001 N Soto St, Los Angeles, CA, USA

2. University of California at Riverside, 900 University Ave, Riverside, CA, USA

3. Wake Forest School of Medicine, One Medical Center Blvd, Winston-Salem, NC, USA

4. Stanford University, 259 Campus Dr, Stanford, CA, USA

5. Brigham and Women’s Hospital, Harvard Medical School, 75 Francis St, Boston, MA, USA

6. University of North Carolina, 250 E Franklin S, Chapel Hill, NC, USA

7. Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, USA

8. Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Boulevard, Suite 100, Baltimore, MD, USA

Abstract

AbstractEvidence suggests exposure to particulate matter with aerodynamic diameter <2.5 μm (PM2.5) may increase the risk for Alzheimer’s disease and related dementias. Whether PM2.5 alters brain structure and accelerates the preclinical neuropsychological processes remains unknown. Early decline of episodic memory is detectable in preclinical Alzheimer’s disease. Therefore, we conducted a longitudinal study to examine whether PM2.5 affects the episodic memory decline, and also explored the potential mediating role of increased neuroanatomic risk of Alzheimer’s disease associated with exposure. Participants included older females (n = 998; aged 73–87) enrolled in both the Women’s Health Initiative Study of Cognitive Aging and the Women’s Health Initiative Memory Study of Magnetic Resonance Imaging, with annual (1999–2010) episodic memory assessment by the California Verbal Learning Test, including measures of immediate free recall/new learning (List A Trials 1–3; List B) and delayed free recall (short- and long-delay), and up to two brain scans (MRI-1: 2005–06; MRI-2: 2009–10). Subjects were assigned Alzheimer’s disease pattern similarity scores (a brain-MRI measured neuroanatomical risk for Alzheimer’s disease), developed by supervised machine learning and validated with data from the Alzheimer’s Disease Neuroimaging Initiative. Based on residential histories and environmental data on air monitoring and simulated atmospheric chemistry, we used a spatiotemporal model to estimate 3-year average PM2.5 exposure preceding MRI-1. In multilevel structural equation models, PM2.5 was associated with greater declines in immediate recall and new learning, but no association was found with decline in delayed-recall or composite scores. For each interquartile increment (2.81 μg/m3) of PM2.5, the annual decline rate was significantly accelerated by 19.3% [95% confidence interval (CI) = 1.9% to 36.2%] for Trials 1–3 and 14.8% (4.4% to 24.9%) for List B performance, adjusting for multiple potential confounders. Long-term PM2.5 exposure was associated with increased Alzheimer’s disease pattern similarity scores, which accounted for 22.6% (95% CI: 1% to 68.9%) and 10.7% (95% CI: 1.0% to 30.3%) of the total adverse PM2.5 effects on Trials 1–3 and List B, respectively. The observed associations remained after excluding incident cases of dementia and stroke during the follow-up, or further adjusting for small-vessel ischaemic disease volumes. Our findings illustrate the continuum of PM2.5 neurotoxicity that contributes to early decline of immediate free recall/new learning at the preclinical stage, which is mediated by progressive atrophy of grey matter indicative of increased Alzheimer’s disease risk, independent of cerebrovascular damage.

Funder

National Institute of Environmental Health Sciences

National Institute on Aging

Southern California Environmental Health Sciences Center

National Institutes of Health

US Department of Health and Human Services

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3